
Advances in Engineering Software 190 (2024) 103610

A
0

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

UMAT4COMSOL: An Abaqus user material (UMAT) subroutine wrapper for
COMSOL
Sergio Lucarini a,b,c, Emilio Martínez-Pañeda d,a,∗

a Department of Civil and Environmental Engineering, Imperial College, London SW7 2AZ, UK
b BCMaterials, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
c Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
d Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

A R T I C L E I N F O

Dataset link: https://www.imperial.ac.uk/mec
hanics-materials/codes/, https://www.empane
da.com/codes, https://github.com/sergiolucari
ni

Keywords:
Abaqus
COMSOL
Solid mechanics
Finite element method
User subroutine
External material

A B S T R A C T

We present a wrapper that allows Abaqus user material subroutines (UMAT s) to be used as an External Material
library in the software COMSOL Multiphysics. The wrapper, written in C language, transforms COMSOL’s
external material subroutine inputs and outputs into Fortran-coded Abaqus UMAT inputs and outputs, by
means of a consistent variable transformation. This significantly facilitates conducting coupled, multi-physics
studies employing the advanced material models that the solid mechanics community has developed over the
past decades. We exemplify the potential of our new framework, UMAT4COMSOL, by conducting numerical
experiments in the areas of elastoplasticity, hyperelasticity and crystal plasticity. The source code, detailed
documentation and example tutorials are made freely available to download at www.empaneda.com/codes.
1. Introduction

Coupling multiple physical phenomena in continuum solids is a
major research focus [1,2]. The mechanical behaviour of structures and
industrial components is relatively well understood in inert environ-
ments but challenges arise as a result of material-environment inter-
actions. Multi-physics structural integrity problems such as hydrogen
embrittlement [3,4], corrosion [5,6], and oxidation-assisted fatigue [7,
8] continue to challenge scientists and engineers. Predicting these
structural integrity problems requires coupling state-of-the-art material
models with equations describing chemical, electrical and thermal phe-
nomena [9–13]. In addition, numerous modern devices and concepts
involve multi-physics environments and mechanical loads, which are
either applied externally or induced by other physical phenomena, such
as thermal expansion, chemical strains or magnetic forces. Examples
include Li-Ion batteries [14,15], hydrogels [16], magnetorheological
elastomers [17,18], and piezo-electric and piezo-resistive materials [19,
20], to name a few. As a result, there is a pressing need to develop com-
putational tools for characterising the coupled behaviour of materials
in multiphysics environments [21–23].

Abaqus [24] and COMSOL [25] have arguably been the most pop-
ular finite element packages for materials modelling and multi-physics
simulations, respectively. For decades, the solid mechanics community

∗ Corresponding author at: Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
E-mail addresses: s.lucarini@imperial.ac.uk (S. Lucarini), emilio.martinez-paneda@eng.ox.ac.uk (E. Martínez-Pañeda).

has developed Abaqus user material subroutines (UMAT s) to numeri-
cally implement new and advanced material models; e.g., in the context
of hyperelasticity [26], elastoplasticity [27], damage [28], and crystal
plasticity [29,30]. Abaqus UMAT subroutines are Fortran codes that
describe constitutive material behaviour under either the small strains
or finite strains convention. On the other hand, COMSOL stands out for
its ability to handle coupled systems of partial differential equations,
with multiple built-in physics modules that encompass most physi-
cal phenomena across the disciplines of chemistry, fluid flow, heat
transfer, electromagnetism, structural mechanics and acoustics. Given
the growing interest in material problems in multi-physics environ-
ments, there is great benefit in coupling these two tools. However,
the COMSOL materials library does not currently support the auto-
matic use of Abaqus UMAT subroutines as material models. Available
materials in COMSOL are either built-in or can be programmed in C
language as a user-defined External Material library. Therefore, our aim
is to develop and share a wrapper that can take advantage of pre-
programmed Abaqus UMAT material models and enable their use as
External Material libraries in COMSOL. Both small and finite strains
are considered, providing a general framework that can leverage the
notable efforts made in materials model development with Abaqus
vailable online 24 February 2024
965-9978/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.advengsoft.2024.103610
Received 13 July 2023; Received in revised form 27 January 2024; Accepted 20 Fe
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

bruary 2024

https://www.elsevier.com/locate/advengsoft
https://www.elsevier.com/locate/advengsoft
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://www.empaneda.com/codes
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
https://github.com/sergiolucarini
http://www.empaneda.com/codes
mailto:s.lucarini@imperial.ac.uk
mailto:emilio.martinez-paneda@eng.ox.ac.uk
https://doi.org/10.1016/j.advengsoft.2024.103610
https://doi.org/10.1016/j.advengsoft.2024.103610
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2024.103610&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda

m
o
p

t
w
t
S
l
r

2

d
c
a
U
t
t
g

s
C

𝐹

i
t
d
t
a
s
l
d
v
F
s
s

m
t
i
m
m

2

c
c
a
g
s
s
e
(
c

2

c
T
t
(
o
v
a
d
v
S
n

T

UMAT s, while also taking advantage of the versatility of COMSOL for
ulti-physics simulations. In this way, the present work contributes to

ngoing efforts in the community aimed at connecting computational
latforms [31–35].

The remainder of this paper is organised as follows. First, in Sec-
ion 2, we proceed to describe the characteristics of the software that
e have developed, UMAT4COMSOL. Then, in Section 3, usage instruc-

ions are provided. The potential of UMAT4COMSOL is demonstrated in
ection 4 through examples encompassing small strain elastoplasticity,
arge strain hyperelasticity and crystal plasticity. Finally, concluding
emarks end the manuscript in Section 5.

. Software description: UMAT4COMSOL

UMAT4COMSOL is a C-coded subroutine that functions as a user-
efined External Material in COMSOL, so as to describe the local me-
hanical behaviour of solid domains. The subroutine contains a call to
n external Fortran-coded subroutine that corresponds to the Abaqus
MAT. During this process, the local state is inputted, and the consti-

utive equations describing the material behaviour are computed, with
heir outputs being returned to COMSOL for solving the multiphysics
lobal problem.

UMAT4COMSOL’s primary internal features are described below,
tarting with a concise explanation of the input requirements for both
OMSOL External Materials and Abaqus UMAT s. Subsequently, the

process of transferring input parameters from COMSOL External Ma-
terials to Abaqus UMAT s is elaborated upon. Finally, the output pro-
cedure, which involves a more detailed understanding of the various
mathematical methods, is described.

2.1. Material models inputs and outputs

When modelling the mechanical behaviour of materials, the consti-
tutive equations characterise the relation between the measure of the
deformation and the stress state of the material. These equations can
be linear, non-linear, time-dependent, and history-dependent.

The input to the material constitutive equations is typically a de-
formation measure. In the small strain formalism, the strain tensor 𝜀𝑖𝑗
is used as the deformation measure, and is defined in terms of the
displacement vector 𝑢𝑖 as

𝜀𝑖𝑗 =
1
2
(

𝑢𝑖,𝑗 + 𝑢𝑗,𝑖
)

, (1)

while the deformation gradient 𝐹𝑖𝑗 , given by

𝑖𝑗 = 𝛿𝑖𝑗 + 𝑢𝑖,𝑗 , (2)

s typically adopted when considering finite strains. Here, 𝛿𝑖𝑗 denotes
he Dirac delta function and the derivative definition in Eq. (2) is
efined in the reference configuration. Another class of inputs are
he material properties, which are typically constant values. Addition-
lly, the constitutive equations can be posed as a function of other
train measures dependent on the aforementioned ones, such as the
eft Cauchy–Green or Green–Lagrange tensors. In the case of history-
ependent material behaviour, one should also consider a state variable
ector 𝛼𝑖, that stores history information of the state of the material.
inally, in time-dependent problems, the time increment value is also
tored, so as to calculate the strain rate measures and the evolution of
tate variables.

The outcome of the constitutive calculations is a calculated stress
easure, which will be translated to forces at the element level. In

he case of non-linear analyses, the mechanical equilibrium equation
s usually linearised, requiring the definition of a consistent tangent
odulus, which corresponds to the derivative of the adopted stress
easure with respect to the adopted strain measure.
2

𝐹

.2. COMSOL external material

COMSOL External Materials are C-coded subroutines that are cal-
ulated at the Gauss point level on each iteration using a subroutine
alled eval. The inputs include the strain/deformation gradient tri-
ls E/Fl, along with the properties vector par and the deformation
radient at the previous time increment FlOld. The (pseudo)time
teps/increments are defined in the delta variable, and a set of
tate variables are passed as a vector state. Once the constitutive
quations are calculated in the core code, the results obtained for each
pseudo)time step/increment are passed using the stress vector S, the
onsistent tangent D/Jac, and the evolved state variables state.

.3. Abaqus user material (UMAT) subroutine

Abaqus UMAT s are Fortran-coded subroutines that calculate the
onstitutive equations at the Gauss point level on every iteration.
he inputs for the mechanical problem include the trial incremen-
al quantities of strain/deformation trials at the current increment
DSTRAN/DFGRD1), the total strain/deformation measures at the end
f the previous increment (STRAN/DFGRD0), the stresses at the pre-
ious time increment STRESS, and the material properties, which
re contained in the PROPS vector. The (pseudo)time increments are
efined in the DTIME variable, together with the current (pseudo)time
alue (TIME), and a set of state variables is passed as a vector in
TATEV. Also, some constitutive relations in a finite strain context
eed the incremental rotation tensor variable DROT. After calculat-

ing the constitutive equations, the key outputs at the end of the
(pseudo)time increment are the updated stress vector STRESS, the
consistent tangent matrix DDSDDE, and the updated state variables
vector STATEV.

2.4. Transfer of inputs

The code initially transforms COMSOL’s input variables to conform
to the convention of Abaqus UMAT subroutines, which requires a
change in the strain format. Specifically, two aspects must be taken care
of in small strain problems. One is that Abaqus stores shear strains as
engineering shear strains; 𝛾𝑥𝑦 = 2𝜀𝑥𝑦. A second one is that the ordering
of the shear components is different. Accordingly, one must change the
COMSOL input strain tensor (E variable) to fit the UMAT convention,
such that

𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧, 𝜀𝑦𝑧, 𝜀𝑥𝑧, 𝜀𝑥𝑦 → 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧 (3)

where 𝛾□ = 2𝜀□ and the left-hand side corresponds to the COMSOL
notation. Here, one should note that COMSOL’s E vector contains the
total trial strains. Consequently, the incremental trial strains vector,
DSTRAN, is computed by subtracting from E the total strain at the
end of the previous increment, which has been stored as state variables
and corresponds to the variable STRAN in the UMAT convention. Also,
the stress at the previous time increment is saved in the state variable
vector and assigned to the UMAT variable STRESS before computing
the constitutive equations. For the finite strains version, the UMAT
requires the deformation gradient 𝐹𝑖𝑗 before and after the (pseudo)time
increment. COMSOL provides the deformation gradients FlOld and Fl
to the external material subroutine as a C-order matrix. These matrices
are transformed into a Fortran-order matrix and passed to the UMAT
as DFGRD0 and DFGRD1. Additionally, the incremental strain DSTRAN
(𝛥𝜀𝑖𝑗) and incremental rotation DROT (𝑅𝛥𝑡

𝑖𝑗) are defined as auxiliary
input variables. The DSTRAN components are computed via

𝛥𝜀𝑖𝑗 = 1∕2
(

𝛥𝐹𝑖𝑝𝐹
−1
𝑡+𝛥𝑡 | 𝑝𝑗 + 𝐹−1

𝑡+𝛥𝑡 | 𝑝𝑖𝛥𝐹𝑗𝑝

)

, (4)

defining 𝛥𝐹𝑖𝑗 = 𝐹𝑡+𝛥𝑡 | 𝑖𝑗 − 𝐹𝑡 | 𝑖𝑗 and forming a vector by using Eq. (3).
he variable DROT is defined by
𝛥𝑡 = 𝑅𝛥𝑡𝑈𝛥𝑡, (5)
𝑖𝑗 𝑖𝑝 𝑝𝑗

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda

t
o
s
i

v
P
S

o
f
r

𝛿

w
d
i

𝛿

t

𝐾

T
V
w

3

s
p
p
d
b
c

3

q
a
v
i
s
i
m
v
T
c
d

standing for the polar decomposition of 𝐹 𝛥𝑡
𝑖𝑗 = 𝐹𝑡+𝛥𝑡 | 𝑖𝑝𝐹−1

𝑡 | 𝑝𝑗 . Finally,
he values of the current (pseudo)time and (pseudo)time increment are
btained by making use of COMSOL’s delta variable and updating a
tate variable. The COMSOL variable delta contains the current time
ncrement and thus corresponds to the UMAT variable DTIME. Since

the UMAT subroutine also takes as input the total time at the beginning
of the increment (TIME variable), this is stored as the first component
of the STATEV vector, which is updated on every increment based on
delta.

2.5. Transfer of outputs

The stress vector and the consistent tangent matrix are the outputs
of the UMAT s. In the small strain version, the stress variable (STRESS)
can be directly transformed by rearranging stress vector shear com-
ponents, as in Eq. (3), to match the required output format for the
COMSOL solver (S variable). In a similar fashion, the consistent tangent
matrix DDSDDE is reordered to match the arrangement of the shear
components, as per (Eq. (3)), and then transposed to convert from a
Fortran-ordered matrix to a C-ordered matrix D.

For the finite strain case, the outputs of the UMAT subroutine (the
stresses and the consistent tangent matrix) need to be transformed
before being transferred. In regards to the stresses, Abaqus UMAT
outputs the Cauchy stress tensor 𝜎𝑖𝑗 in the variable STRESS (as a
ector, using Voigt notation), while COMSOL works with the second
iola–Kirchhoff stress 𝑆𝑖𝑗 , using the variable S. The transformation,
TRESS → S, is defined using the following relation

𝑆𝑖𝑗 = 𝐽𝐹−1
𝑖𝑞 𝜎𝑞𝑝𝐹

−𝑇
𝑗𝑝 , (6)

where 𝐽 = det
(

𝐹𝑖𝑗
)

.
As described below, the transformation of the consistent tangent

tensor (DDSDDE → Jac) in a finite strains context requires careful
consideration. This is also a key step to guarantee the appropriate
convergence rate. The material Jacobian obtained from the Abaqus
UMAT user subroutine at finite strains is the tangent modulus tensor
for the Jaumann rate of the Kirchhoff stress, denoted by 𝐶𝐴𝑏𝑎𝑞𝑢𝑠

𝑖𝑗𝑘𝑙 , which
is a fourth-order tensor defined as
∇
𝜏 𝑖𝑗 = �̇�𝑖𝑗 −𝑤𝑖𝑝𝜏𝑝𝑗 − 𝜏𝑖𝑝𝑤𝑗𝑝 = 𝐽 𝐶Abaqus

𝑖𝑗𝑘𝑙 𝑑𝑘𝑙 (7)

where 𝜏𝑖𝑗 denotes the Kirchhoff stress, ∇ is the Jaumann rate, and 𝑤𝑖𝑗
and 𝑑𝑖𝑗 are the spin tensor and stretch tensor, respectively. In contrast,
the COMSOL framework requires the material tangent, 𝐾COMSOL

𝑖𝑗𝑘𝑙 , which
is given by

�̇�𝑖𝑗 = 𝐾COMSOL
𝑖𝑗𝑘𝑙 �̇�𝑘𝑙 . (8)

We shall then derive an explicit expression that relates the two fourth-
order tensors, 𝐶Abaqus

𝑖𝑗𝑘𝑙 and 𝐾COMSOL
𝑖𝑗𝑘𝑙 . Combining Eqs. (6) and (8), one

reaches

𝐾COMSOL
𝑖𝑗𝑘𝑙 =

𝜕𝑆𝑖𝑗

𝜕𝐹𝑘𝑙
=

𝜕
(

𝐽𝐹−1
𝑖𝑞 𝜎𝑞𝑝𝐹−1

𝑗𝑝

)

𝜕𝐹𝑘𝑙
=

𝜕
(

𝐹−1
𝑖𝑞 𝜏𝑞𝑝𝐹−1

𝑗𝑝

)

𝜕𝐹𝑘𝑙
. (9)

Expanding the derivative of the product in Eq. (9) and expressing it in
index notation, we obtain:

𝐾COMSOL
𝑖𝑗𝑘𝑙 =

𝜕𝑆𝑖𝑗

𝜕𝐹𝑘𝑙
=

𝜕𝐹−1
𝑖𝑞

𝜕𝐹𝑘𝑙
𝜏𝑞𝑝𝐹

−1
𝑗𝑝 + 𝐹−1

𝑖𝑞

𝜕𝜏𝑞𝑝
𝜕𝐹𝑘𝑙

𝐹−1
𝑗𝑝 + 𝐹−1

𝑖𝑞 𝜏𝑞𝑝
𝜕𝐹−1

𝑗𝑝

𝜕𝐹𝑘𝑙
(10)

This equation expresses the components of the COMSOL material tan-
gent, 𝐾COMSOL

𝑖𝑗𝑘𝑙 , as a function of components that can be obtained
using the definition of the Abaqus tangent modulus tensor 𝐶Abaqus

𝑖𝑗𝑘𝑙 , see
Eq. (7). The first and third terms in Eq. (10) are the derivatives of the
inverse of a tensor with respect to itself: 𝜕𝐹−1

𝑗𝑝 ∕𝜕𝐹𝑘𝑙 = −𝐹−1
𝑙𝑝 𝐹−1

𝑗𝑘 . To
btain the second term in Eq. (10), we linearise the rate quantities
rom Eq. (7) by multiplying by an infinitesimal time increment and
eordering terms, yielding

Abaqus
3

𝜏𝑖𝑗 = 𝐽 𝐶𝑖𝑗𝑘𝑙 𝛿𝑑𝑘𝑙 + 𝛿𝑤𝑖𝑝𝜏𝑝𝑗 + 𝜏𝑖𝑝𝛿𝑤𝑗𝑝, (11) s
where 𝛿𝑑𝑖𝑗 and 𝛿𝑤𝑖𝑗 are obtained as functions of 𝐹𝑖𝑗 and 𝛿𝐹𝑖𝑗 via

𝛿𝑑𝑖𝑗 =
1
2
𝛿𝐹𝑖𝑝𝐹

−1
𝑝𝑗 + 1

2
𝛿𝐹𝑗𝑝𝐹

−1
𝑝𝑖 , 𝛿𝑤𝑖𝑗 =

1
2
𝛿𝐹𝑖𝑝𝐹

−1
𝑝𝑗 − 1

2
𝛿𝐹𝑗𝑝𝐹

−1
𝑝𝑖 . (12)

The Kirchhoff stress is also linearised with respect to the perturba-
tion of the deformation gradient as

𝛿𝜏𝑖𝑝 =
𝜕𝜏𝑖𝑝
𝜕𝐹𝑘𝑙

𝛿𝐹𝑘𝑙 . (13)

here 𝛿𝜏𝑖𝑗 and 𝛿𝐹𝑖𝑗 are the Kirchhoff stress and the deformation gra-
ient perturbations, respectively. Inserting the expressions of Eq. (12)
nto Eq. (11), we obtain

𝜏𝑖𝑝 =
𝐽
2
𝐶Abaqus
𝑖𝑝𝑘𝑚 𝛿𝐹𝑘𝑙𝐹

−1
𝑙𝑚 + 𝐽

2
𝐶Abaqus
𝑖𝑝𝑚𝑘 𝐹−1

𝑙𝑚 𝛿𝐹𝑘𝑙

+1
2
𝐼𝑖𝑝𝑘𝑞𝛿𝐹𝑘𝑙𝐹

−1
𝑙𝑚 𝜏𝑚𝑞 −

1
2
𝐼𝑖𝑝𝑚𝑞𝐹

−1
𝑙𝑚 𝛿𝐹𝑘𝑙𝜏𝑘𝑞

+1
2
𝐼𝑖𝑝𝑞𝑘𝜏𝑞𝑚𝐹

−1
𝑙𝑚 𝛿𝐹𝑘𝑙 −

1
2
𝐼𝑖𝑝𝑞𝑚𝜏𝑞𝑘𝐹

−1
𝑙𝑚 𝛿𝐹𝑘𝑙

(14)

which we can be used to obtain 𝜕𝜏𝑖𝑝∕𝜕𝐹𝑘𝑙, considering Eq. (13). By
considering the minor symmetries of 𝐶Abaqus

𝑖𝑗𝑘𝑙 and the symmetry of 𝜏𝑖𝑗 ,
we can simplify the expression and arrive at the following definition of
𝜕𝜏𝑖𝑝∕𝜕𝐹𝑘𝑙

𝜕𝜏𝑖𝑝
𝜕𝐹𝑘𝑙

= 𝐽 𝐶Abaqus
𝑖𝑝𝑘𝑚 𝐹−1

𝑙𝑚 + 1
2
𝛿𝑖𝑘𝐹

−1
𝑙𝑚 𝜏𝑚𝑝 −

1
2
𝐹−1
𝑙𝑖 𝜏𝑘𝑝 +

1
2
𝛿𝑝𝑘𝐹

−1
𝑙𝑚 𝜏𝑖𝑚 − 1

2
𝐹−1
𝑙𝑝 𝜏𝑖𝑘.

(15)

The relation between the COMSOL and Abaqus material tangents is
hen obtained by inserting Eq. (15) into Eq. (10), rendering

COMSOL
𝑖𝑗𝑘𝑙 = − 𝐹 −1

𝑙𝑞 𝐹 −1
𝑖𝑘 𝜏𝑞𝑝𝐹

−1
𝑗𝑝 + 𝐹 −1

𝑖𝑞

(

𝐽 𝐶Abaqus
𝑞𝑝𝑘𝑚 𝐹 −1

𝑙𝑚 + 1
2
𝛿𝑞𝑘𝐹

−1
𝑙𝑚 𝜏𝑚𝑝

− 1
2
𝐹 −1
𝑙𝑞 𝜏𝑘𝑝 +

1
2
𝛿𝑝𝑘𝐹

−1
𝑙𝑚 𝜏𝑞𝑚 − 1

2
𝐹 −1
𝑙𝑝 𝜏𝑞𝑘

)

𝐹 −1
𝑗𝑝 − 𝐹 −1

𝑖𝑞 𝜏𝑞𝑝𝐹
−1
𝑙𝑝 𝐹 −1

𝑗𝑘 .

(16)

he resulting COMSOL consistent tangent can then be transformed to
oigt notation and transposed from Fortran-order to C-order matrix,
hich is the required output to be used by the COMSOL solver.

. Usage instructions

This section provides a brief description of the source code as-
embly, which aims to aid in understanding the software and enable
ersonalised development. The relevant operations to use the wrap-
er are also described. UMAT4COMSOL is made freely available to
ownload at https://github.com/sergiolucarini, where future forks will
e allowed to enable community developments, and www.empaneda.
om/codes.

.1. Organisation of the source code

UMAT4COMSOL is a C code that defines the eval function re-
uired in COMSOL for user-defined External materials. Two versions
re available: a small strain version and a finite strain version. Both
ersions have a similar structure. One of the key elements of the code
s an external umat function, which is linked to the Fortran UMAT
ubroutine. The first part of the code handles this umat function, which
s followed by the standard header for a COMSOL user-defined external
aterial subroutine, as per the COMSOL reference manual. Then, input

ariables are transformed using the operations described in Section 2.4.
he core code calls the Abaqus UMAT subroutine to compute the
onstitutive equations, and the last part of the code converts the output
ata, as explained in Section 2.5, which is then passed to the COMSOL
olver.

https://github.com/sergiolucarini
http://www.empaneda.com/codes
http://www.empaneda.com/codes
http://www.empaneda.com/codes

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Fig. 1. Flow chart of UMAT4COMSOL.
3.2. Main usage

The main file is a wrapper in C language called UMAT4COMSOL.c.
Once compiled, it can be used as a user-defined External Material library
in COMSOL. For the compilation process, the UMAT4COMSOL.c and
umat.f files should be in the same folder. The following commands
can be used to compile the code:

gfortran -c umat.f
gcc -c UMAT4COMSOL.c
gcc -shared -o extmat.dll umat.o UMAT4COMSOL.o
-lgfortran -lquadmath

Here, the compilation process uses open-source compilers, but other
Fortran and C compilers can also be used as long as the equivalent
compiling flags are used. Note that the scheme can accommodate
UMAT subroutines written in both fixed Fortran (FORTRAN 77) and
free Fortran (Fortran 90). The above commands generate two objects
and a dynamic library called extmat.dll which is required for
running simulations in COMSOL. If Linux is used, the extension of the
library should be ‘‘.so’’ (i.e., extmat.so). It should also be noted
that, for finite strain problems, a different wrapper is provided, named
UMAT4COMSOLfinite.c.

To run non-linear simulations with external materials in COMSOL,
one can use either the Time-Dependent Solver or the Stationary Solver.
For small strains, the material should be introduced as a General stress–
strain relation, and for finite strains, as a General stress-deformation
relation. Then, the properties vector needs to be included in the Ma-
terial model parameters vector, and the number of state variables and
the initialisation values of the vector must be given. Finally, the path to
the compiled dynamic library (extmat.dll) must be entered in the
External Material Library ’s field and imported into the COMSOL model.

To use external materials in the Solid Mechanics module, an External
Stress-Strain relation node must be created for each phase in the domain
and linked to the corresponding External Material created. After setting
the boundary conditions and solver settings, the simulation is ready to
be run and post-processed.

3.3. Sofware aspects

As stated previously, this wrapper relies on the definition of a
COMSOL External Material library. A comprehensive scheme of the
functioning of the framework is shown in Fig. 1. The procedure im-
ports a compiled object, which encompasses Fortran and C code. The
compiler choice is up to the user, taking into account the particularities
of each compiler.

Once the compiled library is associated with the COMSOL input file,
the wrapper will act as any material in COMSOL, enabling the use of the
4

advanced functionalities that COMSOL offers. For non-linear analyses,
COMSOL will access the External Material library at least twice in each
iteration, once for obtaining the stress and a second time for obtaining
the consistent tangent. This makes the COMSOL analysis less efficient
compared to Abaqus since the latter is optimised to extract both at once.

4. Representative results and applications

To demonstrate the capabilities of UMAT4COMSOL, we provide
representative results in the context of three areas of particular interest:
elastoplasticity, large strain hyperelasticity and crystal plasticity; vali-
dating the outputs against Abaqus calculations. Thus, we first predict
the behaviour of an elastoplastic plane stress holed plate undergoing
small strains (Section 4.1). Then, in Section 4.2, we verify the fi-
nite strains implementation by considering a neo-Hookean hyperelastic
model. Finally, in Section 4.3, we employ an advanced crystal plasticity
model to showcase UMAT4COMSOL potential in handling complex
constitutive equations. These are just three examples of the capabilities
of UMAT4COMSOL but its applicability is universal, as it provides a
non-intrusive connection between COMSOL and any material models
available as Abaqus UMAT s. As an example of its potential, a fourth
case study is included where a coupled problem is solved — the
transport of hydrogen in a single crystal.

Of interest to all of these studies is the description of the tolerance
criteria employed in Abaqus and COMSOL, as well as their comparison.
Consider first the case of Abaqus. The tolerances for non-linear analysis
in Abaqus are expressed in terms of maximum residual forces, such that
equilibrium is achieved when this value is below a tolerance tolAbaqus.
The inequality reads as

tolAbaqus > 𝑟𝑚𝑎𝑥

𝑞
, (17)

where 𝑟𝑚𝑎𝑥 is the maximum value of the residual force vector and 𝑞 is
the overall time-averaged value of the spatially averaged force over the
entire model. On the other hand, COMSOL considers that convergence
has been achieved when the relative tolerance tolCOMSOL exceeds the
relative error computed as the weighted Euclidean norm. That is,

tolCOMSOL >

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

|𝐸𝑖|

𝑊

)2
, (18)

where 𝐸𝑖 is the estimated solution error vector of the 𝑖th degree
of freedom, 𝑁 is the number of degrees of freedom and 𝑊 is the
weight, which is determined by 𝑊 = max

(

|𝑈𝑖|, 𝑆
)

, where |𝑈𝑖| is the
absolute value of the solution at that specific degree of freedom and
𝑆 the absolute value of the average of the solution vector. For the
numerical benchmarks a non-linear tolerance of tolAbaqus = 5 × 10−3

and tolCOMSOL = 1 × 10−3 has been set for the Abaqus and COMSOL

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Fig. 2. Mechanical response of an elastoplastic holed plate: contour plots of the equivalent plastic strain. Results obtained: (a) with Abaqus, using an elastoplastic UMAT, and (b)
with COMSOL, using the same UMAT and UMAT4COMSOL. The deformation has been scaled by a factor of 20.
Fig. 3. Mechanical response of an elastoplastic holed plate: (a) Force versus displacement response, predicted with Abaqus (+UMAT) and with COMSOL (+UMAT and
UMAT4COMSOL); and (b) convergence plots for both COMSOL and Abaqus solvers, showing the magnitude of the residual for each iteration as a function of the load increment.
In (b), iterations are represented with equispaced subdivisions within each increment interval.
𝜀

solvers, respectively. These are the default tolerances for both solvers.
It is worth noting that while Abaqus also has a solution-based tolerance
criterion, the residual-based one given in Eq. (17) is typically more
restrictive.

4.1. Small strain elastoplastic model

In this example, we simulate the mechanical behaviour of a rectan-
gular plate with a circular hole that is undergoing plastic deformation.
The geometry and loading conditions are similar to the benchmark
problem presented in Ref. [36]. The plate has a width of 36 mm
and a height of 20 mm, and contains a hole of 5 mm radius at its
centre. Due to symmetry, only one quarter of the model is simulated,
with symmetry boundary conditions being applied on the left and
bottom edges. The thickness of the plate is much smaller than the other
dimensions, and the loads are confined to the plate plane, so plane
stress conditions are assumed. The right edge of the plate is subjected
to a traction that ramps linearly up to a maximum of 133.65 MPa.
The plate is made of an isotropic elastoplastic material whose elastic
response is characterised by a value of Young’s modulus of 𝐸 = 70 GPa
and a Poisson’s ratio of 𝜈 = 0.2. In all case studies, we select the
type of finite element consistently across platforms. In this specific
benchmark, first-order plane stress Lagrange triangular elements with
reduced integration are used in COMSOL, and accordingly, so-called
CPS6 elements are used in the Abaqus calculations — the analogous
choice. The material response is assumed to be characterised by the von
5

Mises plasticity, with a yield stress of 𝜎𝑦 = 243 MPa. Accordingly, the
total strains are additively decomposed into elastic and plastic parts,
𝜀𝑖𝑗 = 𝜀𝑒𝑖𝑗 + 𝜀𝑝𝑖𝑗 , and the Cauchy stresses are given by,

𝜎𝑖𝑗 = 𝐶𝑒
𝑖𝑗𝑘𝑙𝜀

𝑒
𝑘𝑙 (19)

where 𝐶𝑒
𝑖𝑗𝑘𝑙 is the elastic isotropic stiffness tensor. Linear isotropic

hardening is assumed, with a tangent modulus of ℎ = 2171 MPa.
Accordingly, the yield condition is given by,

𝑓
(

𝜎𝑖𝑗
)

=
√

3
2
𝑠𝑖𝑗𝑠𝑖𝑗 −

(

𝜎𝑦 + ℎ𝜀𝑝
)

(20)

where 𝑠𝑖𝑗 is the deviatoric part of the Cauchy stress, 𝑠𝑖𝑗 = dev
(

𝜎𝑖𝑗
)

𝑖𝑗 ,

and 𝜀𝑝 is the equivalent plastic strain, 𝜀𝑝 = ∫
√

2∕3 �̇�𝑝𝑖𝑗 �̇�
𝑝
𝑖𝑗 d𝑡. The rate

of the latter evolves as,

̇ 𝑝𝑖𝑗 = �̇� 3
2
√

3 𝑠𝑝𝑞𝑠𝑝𝑞
𝑠𝑖𝑗 (21)

with �̇� being the plastic multiplier. The loading path is divided into
22 constant increments (using the Stationary Solver in COMSOL). The
material constants are introduced as properties in the COMSOL External
Material library and the plastic strain tensor is considered a state vari-
able, initialised with zeros. Finite element calculations are run in both
Abaqus and COMSOL using the same user material (UMAT) subroutine,
with the COMSOL job exploiting the UMAT4COMSOL wrapper. The
results obtained are given in Figs. 2 and 3.

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Fig. 4. Mechanical response of a twisted neo-Hookean cube: contour plots of the displacement field magnitude (L2 norm). Results obtained: (a) with Abaqus, using a non-linear
hyperelastic UMAT, and (b) with COMSOL, using the same UMAT and UMAT4COMSOL.
𝜏

The equivalent plastic strain contours obtained with COMSOL and
Abaqus appear to be indistinguishable, see Fig. 2. The displacement
solution difference between the two approaches is less than 0.6% in
terms of relative L2-norm, indicating that the results obtained with
Abaqus and COMSOL are identical. The perfect agreement obtained is
also evident Fig. 3a, which shows the engineering stress–strain curves
obtained with both packages.

The convergence rates are given in Fig. 3b. Specifically, the magni-
tudes of the residuals are provided for each iteration as a function of
the load/time increment. As shown in Fig. 3b, after approximately ten
load increments, two iterations are needed to achieve convergence in
every increment. This is the same for both Abaqus and COMSOL, and
the number of iterations is similar, demonstrating that both provide a
similar convergence rate. Some differences are seen in the magnitude of
the residuals but this should be considered with care as COMSOL uses
the L2-norm of the residual vector to evaluate the convergence while
Abaqus uses the ∞-norm of the out-of-balance forces.

4.2. Finite strain neo-Hookean hyperelastic model

The case study aims to verify the large strain implementation and
showcase the use of UMAT4COMSOL with another material model:
non-linear hyperelasticity. To this end, the behaviour resulting from
twisting a three-dimensional cube made of a neo-Hookean material is
studied. The characteristic length of the cube is 1 m, as in the hyper-
elasticity example presented in Ref. [37]. The constitutive equation of
the neo-Hookean hyperelastic model is given by,

𝜎𝑖𝑗 =
1
𝐽

𝐸
2 (1 + 𝜈)

(

𝐹𝑖𝑞𝐹𝑗𝑞 −
1
3
𝛿𝑖𝑗𝐹𝑘𝑞𝐹𝑘𝑞

)

+ 𝐸
3 (1 − 2𝜈)

(𝐽 − 1) 𝛿𝑖𝑗 (22)

and the material parameters used are 𝐸 = 106 Pa and 𝜈 = 0.3.
These are introduced as properties to the COMSOL External Material
library. The unitary cuboid is twisted by 60 degrees, and the boundary
conditions are given, on one face, by Dirichlet boundary conditions
of rotation with respect to the centre and, on the opposite face, by
symmetry boundary conditions. For consistency, the calculations are
obtained using first-order Lagrange tetrahedral elements with reduced
integration in both COMSOL and Abaqus. This element type is denoted
C3D4 in Abaqus. Two loading cases are studied: one with a single load
increment and another one splitting the load into 10 constant load
increments. Calculations are conducted using stationary solvers in both
Abaqus and COMSOL.

The predicted deformed shapes of the twisted cube are given in
Fig. 4, showing the contours of the displacement field magnitude.
Again, no differences are observed in the results. The contours are also
insensitive to the number of load increments employed. Importantly,
the relative error in the displacement solution between the Abaqus-
6

and COMSOL-based calculations is below 0.3%, as measured by the L2-
norm. Moreover, this difference does not increase when using only one
pseudo-time increment.

The non-linear convergence of both solvers is comparable, as shown
in Fig. 5, where the magnitude of the residual for each iteration is
provided for both the 10-increment (Fig. 5a) and the 1-increment
(Fig. 5b) studies. In both loading cases, COMSOL and Abaqus require a
similar number of solver iterations to obtain a converged solution. As in
the previous case study (Section 4.1), some quantitative differences can
be observed in the magnitude of the residuals, which are intrinsically
related to their definition.

4.3. Finite strain crystal plasticity

The last benchmark deals with the deformation of a metallic poly-
crystal where the material response is characterised using a crystal
plasticity material model [38]. This benchmark has been chosen for
mainly two reasons: (i) its complexity, as the crystal plasticity UMAT
involves a large number of state variables and exhibits dependencies
on the loading path and the strain rate, and (ii) its relevance, as it
is not currently possible to run crystal plasticity studies in COMSOL
despite its importance in many multi-physics problems. The chosen
crystal plasticity material model is elastic-viscoplastic and assumes that
plastic deformation only occurs by plastic shear along the slip systems.
The deformation gradient is multiplicatively decomposed into elastic
and plastic parts,

𝐹𝑖𝑗 = 𝐹 𝑒
𝑖𝑝𝐹

𝑝
𝑝𝑗 (23)

For a slip system 𝛼, the plastic slip rate (�̇�𝛼) is given in terms of
the resolved shear stress (𝜏𝛼) through the following phenomenological
power-law,

�̇�𝛼 = �̇�0
|

|

|

|

|

𝜏𝛼

𝜏𝛼𝑐

|

|

|

|

|

𝑛

(24)

where �̇� is the reference strain rate, and 𝑛 is an exponent describing the
dependence of strain rate on the stress. In Eq. (24), the critical resolved
shear stress on the 𝛼 slip system is the denominator 𝜏𝛼𝑐 , which evolves
following the Asaro-Needleman hardening rule [39], defined by

̇ 𝛼𝑐 =
∑

𝛽
𝑞𝛼𝛽ℎ0 sec2

|

|

|

|

|

|

ℎ0
∑

𝛿 ∫
𝑡
0
|

|

�̇�𝛿|
|

d𝑡
𝜏𝑠 − 𝜏0

|

|

|

|

|

|

�̇�𝛽 (25)

Accordingly, the plastic part evolves following the sum of plastic
slips as:

�̇� 𝑝
𝑖𝑗 =

∑

𝛼
�̇�𝛼𝑠𝛼𝑖 𝑛

𝛼
𝑞 𝐹 𝑝

𝑞𝑗 (26)

where 𝑠𝛼 and 𝑛𝛼 are unit vectors, respectively parallel to the slip
direction and normal to the slip plane. This crystal plasticity model

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Table 1
Crystal plasticity parameters adopted in the simulations.

Parameter 𝐶11 [GPa] 𝐶12 [GPa] 𝐶44 [GPa] ℎ0 [MPa] 𝜏𝑠 [MPa] 𝜏0 [MPa] �̇�0 [–] 𝑛 [–] 𝑞𝛼𝛽 [–]

Magnitude 168.4 121.4 75.4 541.4 109.5 60.8 0.001 10 1
Fig. 5. Convergence plots of twisting cuboid simulation using a neo-Hookean UMAT material in both solvers, Abaqus and COMSOL. Subfigure (a) shows the residual evolution
in 10 pseudo-time increments, while subfigure (b) provides convergence plots for 1 pseudo-time increment. In (a), iterations are represented with equispaced subdivisions within
each increment interval.
Fig. 6. Boundary value problem: crystal plasticity-based polycrystal containing 10
grains.

represents a face-centred cubic metal lattice with 12 octahedral slip
systems and the parameters used are shown in Table 1.

The boundary value problem is a unit cube containing 10 ran-
domly oriented grains, each behaving as a single crystal with elastic-
viscoplastic behaviour, see Fig. 6. This is a common geometry in
the crystal plasticity community [38]. One External Material must be
defined in COMSOL for each grain, as while they all use the same
material model, they require different input properties due to the
different orientations. Second-order Lagrange tetrahedral elements are
used for the polycrystal domain discretisation in both COMSOL and
Abaqus (C3D10). Here, it should be noted that to ensure consistency
in the number of integration points used, the reduced integration flag
must be activated in COMSOL as this implies the use of 4 integration
points per element, what Abaqus denotes as a fully integrated quadratic
7

tetrahedral element. The boundary conditions are chosen to mimic a
uniaxial strain-controlled tensile test, with the displacement imposed
on one face of the cube and the opposite face fixed. A final elongation of
5% is imposed. Given the rate-dependent nature of the problem, COM-
SOL’s Time Dependent solver is used, with the time being discretised
into 20 uniform increments of 1 s. The results obtained are shown in
Figs. 7 and 8.

As in the previous case studies, the results obtained appear to be
identical, independently of the finite element package used. No visible
differences are observed in the deformed shape or the stress contours,
see Fig. 7. Due to the different grain orientations, various locations
of stress concentration can be observed, and these are present in both
COMSOL and Abaqus predictions. From a quantitative viewpoint, the
differences in the displacement solution fields observed are below
0.1%, validating our approach and implementation.

The predicted macroscopic stress–strain curve is shown in Fig. 8a.
The results from Abaqus and COMSOL perfectly overlap. The conver-
gence of the simulations is evaluated in Fig. 8b, which displays the
evolution of the equilibrium error estimator. A quadratic or quasi-
quadratic rate of convergence is observed. Both COMSOL and Abaqus
exhibit a similar performance although on this occasion Abaqus appears
to provide a better performance in the last increments. This is likely to
be related to the different methods employed for estimating the relative
residual (L2-norm in COMSOL and ∞-norm in Abaqus).

4.4. Coupled hydrogen diffusion and deformation in a single crystal

Finally, UMAT4COMSOL is used to model a problem of growing sci-
entific and technological interest: the coupling between hydrogen dif-
fusion and material deformation in a single crystal. Hydrogen is famed
for ‘embrittlement’ metallic materials, significantly reducing their duc-
tility, fracture toughness and fatigue crack growth resistance, and
understanding these hydrogen-material interactions is critical to the
safe deployment of hydrogen energy infrastructure [40,41]. To date,
no commercial finite element package enables the coupling of hydrogen
transport and crystal plasticity, a key element to gaining fundamental
understanding and designing hydrogen-resistant microstructures. As

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Fig. 7. Crystal plasticity-based predictions of polycrystalline deformation: contour plots of the von Mises stress (in GPa). Results obtained: (a) with Abaqus, using a crystal plasticity

UMAT, and (b) with COMSOL, using the same UMAT and UMAT4COMSOL. The deformation has been scaled by a factor of 5.
Fig. 8. Crystal plasticity-based predictions of polycrystalline deformation: (a) resultant macroscopic stress–strain curve, as predicted with Abaqus (+UMAT) and with COMSOL
(+UMAT and UMAT4COMSOL); and (b) convergence plots for both COMSOL and Abaqus solvers, showing the magnitude of the residual for each iteration as a function of the

load increment. In (b), iterations are represented with equispaced subdivisions within each increment interval.
discussed above, COMSOL does not include any crystal plasticity consti-
tutive model, and Abaqus does not have the ability to conduct coupled
deformation-diffusion. Thus, the ability of UMAT4COMSOL to break
new ground is here showcased by exploiting COMSOL’s abilities to run
coupled analyses and the existing crystal plasticity material libraries
available as Abaqus UMAT subroutines.

The analysis focuses on the behaviour of a single crystal containing
a blunted crack of opening 0.01 mm. As depicted in Fig. 9, small scale
yielding conditions are assumed and a so-called boundary layer formu-
lation is adopted, whereby a remote 𝐾𝐼 field is imposed by prescribing
the displacement of the outer nodes based on William’s linear elasticity
solution (see, e.g., Ref. [42]). Finite strain conditions are assumed.
The outer radius is taken to be sufficiently large so that it has no
effect on the solution (𝑅 = 150 mm) and only half of the problem is
simulated, taking advantage of symmetry. As shown in Fig. 9, the mesh
is refined near the crack tip, to resolve the stress and strain gradients
taking place there. This is a classic benchmark in the fracture mechanics
community, which has also been comprehensively used in the study
of hydrogen embrittlement in isotropic elastic–plastic solids [43,44].
However, to the best of the author’s knowledge, this work constitutes its
first application to single crystals. The material behaviour is described
by the crystal plasticity model employed in Section 4.3, using the same
material parameters (Table 1). The transport of hydrogen is simulated
by using an extended version of Fick’s law and assuming a state of
equilibrium between the hydrogen located in lattice and trapping sites
- so-called Oriani’s equilibrium conditions [45]. Accordingly, the total
8

hydrogen content 𝐶 is assumed to additively decomposed into the hy-
drogen concentration in lattice sites 𝐶𝐿 and the hydrogen concentration
in trapping sites 𝐶𝑇 . Only one type of trap is considered: dislocations,
and its evolution with the plastic deformation is defined by integrating
the crystal plasticity model into the experimentally derived expression
first proposed by Kumnick and Johnson [46], such that the trap density
equals,

log𝑁𝑇 = 23.26 − 2.33 exp

(

−5.5
∑

𝛼
𝛾𝛼
)

(27)

where 𝛾𝛼 is the accumulated plastic shear strain of the crystal plane 𝛼.
Hydrogen diffusion through the crystal lattice is driven by gradi-

ents of concentration and of hydrostatic stress 𝜎ℎ, bringing a second
coupling with the mechanical problem. The balance equation for 𝐶𝐿
reads,

𝜕𝐶𝐿
𝜕𝑡

+
𝜕𝐶𝑇
𝜕𝑡

+ ∇ ⋅
(

−𝐷𝐿∇𝐶𝐿 +
𝐷𝐿𝑉𝐻
𝑅𝑇

𝐶𝐿∇𝜎ℎ

)

= 0 (28)

where 𝐷𝐿 is the lattice diffusion coefficient, 𝑇 is the absolute temper-
ature, 𝑅 is the gas constant, and 𝑉𝐻 is the partial molar volume of
hydrogen. Then, denoting 𝑁𝐿 as the density of lattice sites and 𝑊𝐵 as
the trap binding energy, Oriani’s equilibrium results in the following
relation between trapped and lattice hydrogen concentrations [47]

𝐶𝑇 = 𝑁𝑇

𝐶𝐿
𝑁𝐿

exp
(

𝑊𝐵
𝑅𝑇

)

1 + 𝐶𝐿 exp
(

𝑊𝐵
) (29)
𝑁𝐿 𝑅𝑇

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
Fig. 9. Boundary layer formulation and finite element mesh used to describe the coupled deformation-diffusion crack tip behaviour of a single crystal exposed to a

hydrogen-containing environment; (a) full geometry, and (b) detail of the crack tip region.
Fig. 10. Using UMAT4COMSOL to gain insight into the coupled deformation-diffusion behaviour of a single crystal exposed to a hydrogen-containing environment. Near crack tip
contours of: (a) normalised lattice concentration 𝐶𝐿∕𝐶0, (b) hydrostatic stress 𝜎ℎ, and (c) equivalent plastic strain, with the deformation being scaled by a factor of 10. Subfigure

(d) shows the quantitative changes in the 𝐶𝐿 distribution ahead of the crack tip due to applied load and time.
Eqs. (28) and (29) can be readily considered in COMSOL by either
by extending their Transport of Dilute Species module (as in Ref. [48]), or
by using their new (as per version 6.2) hydrogen transport capabilities,
based on the implementation by Hageman and Martínez-Pañeda [49].

We particularise the model to the study of a single crystal with
lattice diffusion coefficient 𝐷𝐿 = 1.27 × 10−8 m2/s, density of lattice
sites 𝑁𝐿 = 8.469 mol/m3, and partial molar volume 𝑉𝐻 = 2 × 10−6

m3/mol [43]. The trap binding energy associated with dislocations is
taken to be 𝑊𝐵 = 60 kJ/mol [46]. The single crystal is oriented parallel
to the (001) direction, implying no rotations from the local to the global
axis are applied. The temperature is assumed to be 𝑇 = 300 K. The
outer displacement is linearly increased with time until reaching an
applied intensity factor of 𝐾𝐼 = 65.8 MPa

√

m at 96 s. The hydrogen
concentration initial and boundary conditions are as follows; no flux
9

is assumed everywhere except for the crack surface, where a fixed
concentration of 𝐶0 = 0.00346 mol/m3 is imposed, which is also the
initial hydrogen concentration in the metal lattice. The computational
domain is discretised with second-order Lagrange triangular elements
with full integration and a multi-pass staggered (segregated) solution
scheme is adopted. No comparison with Abaqus is provided, as this
sort of analysis cannot be conducted using only UMAT subroutines (a
UMATHT [50] or UEL [51] are needed). The results obtained are shown
in Fig. 10, in terms of contours of normalised hydrogen concentration
(𝐶𝐿∕𝐶0), hydrostatic stress (𝜎ℎ) and equivalent plastic strain 𝜀𝑝 =
∑

𝛼 𝛾
𝛼 .

The results obtained, given in Fig. 10, show the expected trends.
The lattice hydrogen content (Fig. 10a) is highest in the regions of high
hydrostatic stress (Fig. 10b). Since a conventional model is used, the

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda

M
S

D

c
i

D

t
c
/
i
(

stress and concentration peaks are slightly ahead of the crack tip; this
would change if the role of strain gradients is accounted for [52,53].
The equivalent plastic strain is highest near the crack tip, as shown
in Fig. 10c, where the deformation has been scaled by a factor of 10.
Accordingly, the hydrogen content trapped in dislocations (not shown)
also increases as the crack tip is approached. Finally, Fig. 10d shows
more quantitative estimates of normalised lattice hydrogen content
ahead of the crack tip, showing the expected sensitivity of 𝐶𝐿 to time
and to the applied mechanical load. In terms of the convergence,
the rate obtained is similar to those when using built-in elasto-plastic
COMSOL materials.

5. Conclusions

We have presented UMAT4COMSOL, a new wrapper that links
COMSOL C-coded External Material library with Abaqus Fortran-coded
user material (UMAT) subroutines. This enables bringing to the multi-
physics environment of COMSOL the advanced material models that the
solid mechanics community has developed and implemented through
Abaqus UMAT subroutines. Thus, UMAT4COMSOL enables the com-
bination of advanced multi-physics and material modelling tools, as
necessary to predict the degradation of Li-Ion batteries, the corro-
sion of metals and the oxidation of superalloys, among others. We
validate our framework and demonstrate its potential by addressing
three case studies of particular relevance: (i) the elastoplastic be-
haviour of a holed plate, (ii) the finite strain non-linear hyperelastic
deformation of a twisted cube, and (iii) the crystal plasticity-based
prediction of microscopic and macroscopic deformation in a polycrys-
talline solid. The results show that predictions obtained using COMSOL
and UMAT4COMSOL are identical to those obtained using Abaqus and
the associated UMAT subroutine. Moreover, convergence rates also
exhibit a remarkable agreement, despite the different characteristics of
each solver. To further highlight the potential of UMAT4COMSOL, the
coupled deformation-diffusion behaviour of a single crystal exposed to
a hydrogen-containing environment is simulated using a crystal plas-
ticity UMAT subroutine and COMSOL’s multi-physics capabilities. This
analysis, of increasing technological importance, highlights the ability
of the wrapper presented to assist in extending the state-of-the-art in
materials and coupled physical modelling.

CRediT authorship contribution statement

Sergio Lucarini: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Data curation, Writing – origi-
nal draft, Visualization. Emilio Martínez-Pañeda: Conceptualization,

ethodology, Investigation, Resources, Writing – review & editing,
upervision, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The software developed, UMAT4COMSOL, is made freely available
ogether with example case studies and documentation. UMAT4COMSOL
an be downloaded from the website of the research group (https:
/www.imperial.ac.uk/mechanics-materials/codes/), a website repos-
tory (https://www.empaneda.com/codes) and a GitHub repository
10

https://github.com/sergiolucarini).
Acknowledgements

The authors gratefully acknowledge financial support through grant
EP/V038079/1 (‘‘SINDRI’’) from the Engineering and Physical Sciences
Research Council (EPSRC), United Kingdom. Sergio Lucarini acknowl-
edges financial support from the Marie Skłodowska-Curie Individual
European Fellowship under the European Union’s Horizon 2020 Frame-
work Programme for Research and Innovation through the project
SIMCOFAT (Grant agreement ID: 101031287). Emilio Martínez-Pañeda
acknowledges financial support from UKRI’s Future Leaders Fellowship
programme, United Kingdom [grant MR/V024124/1].

References

[1] Martínez-Pañeda E. Progress and opportunities in modelling environmentally
assisted cracking. RILEM Tech Lett 2021;6:70–7.

[2] Mianroodi JR, Shanthraj P, Liu C, Vakili S, Roongta S, Siboni NH, Perchikov N,
Bai Y, Svendsen B, Roters F, Raabe D, Diehl M. Modeling and simulation
of microstructure in metallic systems based on multi-physics approaches. npj
Comput Mater 2022;8(1):1–15.

[3] Martínez-Pañeda E, Niordson CF, Gangloff RP. Strain gradient plasticity-
based modeling of hydrogen environment assisted cracking. Acta Mater
2016;117:321–32.

[4] Gobbi G, Colombo C, Miccoli S, Vergani L. A fully coupled implementation of
hydrogen embrittlement in FE analysis. Adv Eng Softw 2019;135(April):102673.

[5] Cui C, Ma R, Martínez-Pañeda E. A phase field formulation for dissolution-driven
stress corrosion cracking. J Mech Phys Solids 2021;147:104254.

[6] Ansari TQ, Huang H, Shi S-Q. Phase field modeling for the morphological and
microstructural evolution of metallic materials under environmental attack. npj
Comput Mater 2021;7:143.

[7] Reuchet J, Remy L. Fatigue oxidation interaction in a superalloy - application
to life prediction in high temperature low cycle fatigue. Metall Trans A Phys
Metall Mater Sci 1983;14(A (1):141–9.

[8] Leo Prakash DG, Walsh MJ, Maclachlan D, Korsunsky AM. Crack growth micro-
mechanisms in the IN718 alloy under the combined influence of fatigue, creep
and oxidation. Int J Fatig 2009;31(11–12):1966–77.

[9] Martínez-Pañeda E, Golahmar A, Niordson CF. A phase field formula-
tion for hydrogen assisted cracking. Comput Methods Appl Mech Engrg
2018;342:742–61.

[10] Kristensen PK, Niordson CF, Martínez-Pañeda E. A phase field model for elastic-
gradient-plastic solids undergoing hydrogen embrittlement. J Mech Phys Solids
2020;143:104093.

[11] Valverde-González A, Martínez-Pañeda E, Quintanas-Corominas A, Reinoso J,
Paggi M. Computational modelling of hydrogen assisted fracture in polycrys-
talline materials. Int J Hydrogen Energy 2022;47(75):32235–51.

[12] Cui C, Ma R, Martínez-Pañeda E. A generalised, multi-phase-field theory for
dissolution-driven stress corrosion cracking and hydrogen embrittlement. J Mech
Phys Solids 2022;166:104951.

[13] Hageman T, Martínez-Pañeda E. Stabilising effects of lumped integration
schemes for the simulation of metal-electrolyte reactions. J Electrochem Soc
2023;170(2):021511.

[14] Boyce AM, Martínez-Pañeda E, Wade A, Zhang YS, Bailey JJ, Heenan TM,
Brett PR, Dan JL. Shearing, cracking predictions of lithium-ion battery elec-
trodes by X-ray computed tomography and modelling. J Power Sources
2022;526:231119.

[15] Ai W, Wu B, Martínez-Pañeda E. A multi-physics phase field formulation for
modelling fatigue cracking in lithium-ion battery electrode particles. J Power
Sources 2022;544:231805.

[16] Pan Z, Brassart L. Constitutive modelling of hydrolytic degradation in hydrogels.
J Mech Phys Solids 2022;167(May):105016.

[17] Rambausek M, Mukherjee D, Danas K. A computational framework for magneti-
cally hard and soft viscoelastic magnetorheological elastomers. Comput Methods
Appl Mech Engrg 2022;391:114500.

[18] Moreno-Mateos MA, Hossain M, Steinmann P, Garcia-Gonzalez D. Hard magnetics
in ultra-soft magnetorheological elastomers enhance fracture toughness and delay
crack propagation. J Mech Phys Solids 2023;173:105232.

[19] Wu JY, Chen WX. Phase-field modeling of electromechanical fracture in piezo-
electric solids: Analytical results and numerical simulations. Comput Methods
Appl Mech Engrg 2021;387:114125.

[20] Quinteros L, García-Macías E, Martínez-Pañeda E. Electromechanical phase-field
fracture modelling of piezoresistive CNT-based composites. Comput Methods
Appl Mech Engrg 2023;407:115941.

[21] Nie JH, Hopkins DA, Chen YT, Hsieh HT. Development of an object-oriented
finite element program with adaptive mesh refinement for multi-physics
applications. Adv Eng Softw 2010;41(4):569–79.

[22] Patzák B, Rypl D, Kruis J. MuPIF-A distributed multi-physics integration tool.
Adv Eng Softw 2013;60–61:89–97.

https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.imperial.ac.uk/mechanics-materials/codes/
https://www.empaneda.com/codes
https://github.com/sergiolucarini
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb1
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb1
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb1
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb2
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb3
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb3
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb3
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb3
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb3
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb4
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb4
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb4
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb5
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb5
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb5
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb6
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb6
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb6
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb6
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb6
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb7
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb7
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb7
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb7
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb7
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb8
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb8
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb8
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb8
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb8
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb9
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb9
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb9
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb9
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb9
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb10
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb10
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb10
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb10
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb10
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb11
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb11
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb11
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb11
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb11
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb12
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb12
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb12
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb12
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb12
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb13
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb13
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb13
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb13
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb13
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb14
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb15
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb15
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb15
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb15
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb15
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb16
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb16
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb16
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb17
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb17
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb17
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb17
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb17
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb18
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb18
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb18
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb18
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb18
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb19
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb19
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb19
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb19
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb19
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb20
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb20
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb20
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb20
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb20
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb21
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb21
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb21
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb21
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb21
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb22
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb22
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb22

Advances in Engineering Software 190 (2024) 103610S. Lucarini and E. Martínez-Pañeda
[23] Zhao Y, Stein P, Bai Y, Al-siraj M, Yang Y, B-xXu. A review on mod-
eling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources
2019;413:259–83.

[24] ABAQUS/standard user’s manual, version 2022. United States: Dassault Systèmes
Simulia Corp; 2022.

[25] COMSOL multiphysics® v. 6.1, COMSOL multiphysics reference manual.
Stockholm, Sweden: COMSOL AB; 2022.

[26] Sun W, Chaikof EL, Levenston ME. Numerical approximation of tangent moduli
for finite element implementations of nonlinear hyperelastic material models. J
Biomech Eng 2008;130(6):061003.

[27] Ramasubramanian M, Wang Y. A computational micromechanics consti-
tutive model for the unloading behavior of paper. Int J Solids Struct
2007;44(22):7615–32.

[28] Navidtehrani Y, Betegón C, Martínez-Pañeda E. A unified Abaqus implementation
of the phase field fracture method using only a user material subroutine.
Materials 2021;14(8):1913.

[29] Huang Y. A user-material subroutine incorporating single crystal plasticity in the
abaqus finite element program. In: Harvard university report. 1991, p. 1–24.

[30] Kysar JW. Addendum to a user-material subroutine incorporating single crystal
plasticity in the abaqus finite element program. In: Harvard university report.
1997, p. 1–3.

[31] Segurado J, Llorca J. Simulation of the deformation of polycrystalline
nanostructured ti by computational homogenization. Comput Mater Sci
2013;76:3–11.

[32] Helfer T, Michel B, Proix J-M, Salvo M, Sercombe J, Casella M. Introducing
the open-source mfront code generator: Application to mechanical behaviours
and material knowledge management within the pleiades fuel element modelling
platform. Comput Math Appl 2015;70(5):994–1023.

[33] Portillo D, del Pozo D, Rodríguez-Galán D, Segurado J, Romero I. Muesli-a
material universal library. Adv Eng Softw 2017;105:1–8.

[34] Papazafeiropoulos G, Muñiz-Calvente M, Martínez-Pañeda E. Abaqus2Matlab: A
suitable tool for finite element post-processing. Adv Eng Softw 2017;105:9–16.

[35] Helfer T, Bleyer J, Frondelius T, Yashchuk I, Nagel T, Naumov D. The ‘mfront
generic interface support’ project. J Open Source Softw 2020;5(48):2003.

[36] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and
fundamentals. seventh edn. Oxford: Butterworth-Heinemann; 2013.

[37] Logg A, Mardal K-A, Wells G. Automated solution of differential equations by the
finite element method: The FEniCS book. Lecture notes in computational science
and engineering, vol. 84, Springer Berlin, Heidelberg; 2012.
11
[38] Segurado J, Lebensohn RA, LLorca J. Chapter one - computational homogeniza-
tion of polycrystals. In: Hussein MI, editor. Advances in crystals and elastic
metamaterials, part 1. Advances in applied mechanics, vol. 51, Elsevier; 2018,
p. 1–114.

[39] Peirce D, Asaro R, Needleman A. An analysis of nonuniform and localized
deformation in ductile single crystals. Acta Metall 1982;30(6):1087–119.

[40] Gangloff RP, Somerday BP. Gaseous hydrogen embrittlement of materials in
energy technologies. Cambridge: Woodhead Publishing Limited; 2012.

[41] del Busto S, Betegón C, Martínez-Pañeda E. A cohesive zone framework for
environmentally assisted fatigue. Eng Fract Mech 2017;185:210–26.

[42] Martínez-Pañeda E, Betegón C. Modeling damage and fracture within
strain-gradient plasticity. Int J Solids Struct 2015;59:208–15.

[43] Sofronis P, McMeeking RM. Numerical analysis of hydrogen transport near a
blunting crack tip. J Mech Phys Solids 1989;37(3):317–50.

[44] Martínez-Pañeda E, Díaz A, Wright L, Turnbull A. Generalised boundary
conditions for hydrogen transport at crack tips. Corros Sci 2020;173:108698.

[45] Oriani R. The diffusion and trapping of hydrogen in steel. Acta Metall
1970;18(1):147–57.

[46] Kumnick AJ, Johnson HH. Deep trapping states for hydrogen in deformed iron.
Acta Metall 1980;28(1):33–9.

[47] Hageman T, Martínez-Pañeda E. A phase field-based framework for electro-
chemo-mechanical fracture: Crack-contained electrolytes, chemical reactions and
stabilisation. Comput Methods Appl Mech Eng 2023;415:116235.

[48] Díaz A, Alegre J, Cuesta I, Martínez-Pañeda E. A comsol framework for predicting
hydrogen embrittlement - part i: coupled hydrogen transport. 2024, submitted
for publication.

[49] Hageman T, Martínez-Pañeda E. An electro-chemo-mechanical framework for
predicting hydrogen uptake in metals due to aqueous electrolytes. Corros Sci
2022;208:110681.

[50] Fernández-Sousa R, Betegón C, Martínez-Pañeda E. Analysis of the influence of
microstructural traps on hydrogen assisted fatigue. Acta Mater 2020;199:253–63.

[51] Kristensen PK, Niordson CF, Martínez-Pañeda E. Applications of phase field
fracture in modelling hydrogen assisted failures. Theor Appl Fract Mech
2020;110:102837.

[52] Niordson CF, Kysar JW. Computational strain gradient crystal plasticity. J Mech
Phys Solids 2014;62:31–47.

[53] Martínez-Pañeda E, del Busto S, Niordson CF, Betegón C. Strain gradient
plasticity modeling of hydrogen diffusion to the crack tip. Int J Hydrogen Energy
2016;41(24):10265–74.

http://refhub.elsevier.com/S0965-9978(24)00017-6/sb23
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb23
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb23
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb23
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb23
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb24
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb24
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb24
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb25
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb25
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb25
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb26
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb26
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb26
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb26
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb26
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb27
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb27
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb27
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb27
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb27
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb28
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb28
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb28
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb28
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb28
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb29
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb29
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb29
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb30
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb30
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb30
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb30
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb30
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb31
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb31
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb31
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb31
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb31
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb32
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb33
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb33
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb33
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb34
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb34
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb34
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb35
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb35
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb35
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb36
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb36
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb36
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb37
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb37
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb37
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb37
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb37
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb38
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb39
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb39
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb39
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb40
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb40
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb40
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb41
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb41
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb41
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb42
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb42
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb42
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb43
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb43
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb43
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb44
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb44
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb44
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb45
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb45
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb45
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb46
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb46
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb46
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb47
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb47
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb47
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb47
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb47
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb48
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb48
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb48
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb48
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb48
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb49
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb49
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb49
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb49
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb49
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb50
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb50
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb50
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb51
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb51
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb51
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb51
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb51
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb52
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb52
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb52
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb53
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb53
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb53
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb53
http://refhub.elsevier.com/S0965-9978(24)00017-6/sb53

	UMAT4COMSOL: An Abaqus user material (UMAT) subroutine wrapper for COMSOL
	Introduction
	Software description: UMAT4COMSOL
	Material models inputs and outputs
	COMSOL External Material
	Abaqus user material (UMAT) subroutine
	Transfer of inputs
	Transfer of outputs

	Usage instructions
	Organisation of the source code
	Main usage
	Sofware aspects

	Representative results and applications
	Small strain elastoplastic model
	Finite strain neo-Hookean hyperelastic model
	Finite strain crystal plasticity
	Coupled hydrogen diffusion and deformation in a single crystal

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

