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Abstract The presence of hydrogen traps within a metallic alloy influences the rate of hydrogen diffusion.
The electro-permeation (EP) test can be used to assess this: the permeation of hydrogen through a thin metallic
sheet is measured by suitable control of hydrogen concentration on the front face and by recording the flux of
hydrogen that exits the rear face. Additional insight is achieved by the more sophisticated three stage EP test:
the concentration of free lattice hydrogen on the front face is set to an initial level, is then dropped to a lower
intermediate value and is then restored to the initial level. The flux of hydrogen exiting the rear face is measured
in all three stages of the test. In the present study, a transient analysis is performed of hydrogen permeation in a
three stage EP test, assuming that lattice diffusion is accompanied by trapping and de-trapping. The sensitivity
of the three stage EP response to the depth and density of hydrogen traps is quantified. A significant difference
in permeation response can exist between the first and third stages of the EP test when the alloy contains a
high number density of deep traps.

Keyword Electro-permeation ·Hydrogen embrittlement · Lattice diffusion coefficient · Trap binding energy ·
Trap density

1 Introduction

There is growing interest in the use of high strength alloys for structures and components exposed to hydrogen-
containing environments, such as sub-sea structures for oil transport or pressure vessels for hydrogen storage
[1,2]. However, dissolved hydrogen can degrade the ductility and fracture toughness of high strength alloys
[3,4]. The susceptibility of metallic structures to hydrogen-assisted failure is sensitive to the solubility and rate
of diffusion of hydrogen atoms in the crystal lattice [5,6]. Microstructural defects such as dislocations, grain
boundaries and vacancies act as hydrogen ‘traps’ that sequester hydrogen and retard diffusion [7,8].

A physically motivated model for the diffusion of hydrogen in metallic alloys has been formulated by
McNabb and Foster [9] for the diffusion of hydrogen in an alloy where the density of traps is lower than the
density of lattice hydrogen sites, see for example [10]. McNabb and Foster [9] account for the kinetics of
trapping and detrapping from a single type of microstructural defect (trap) uniformly distributed in the alloy.
Coupled partial differential equations are derived for the concentrations of lattice and trapped hydrogen in
space and time [9], and numerical solutions have been obtained for these equations [11,12]. The McNabb and
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Fig. 1 The three stage EP test with the boundary condition at x̄ = 0 throughout the test and the corresponding hydrogen flux.
Stage 1 attains a steady state at time t̄1; stage 2 starts at t̄1 and continues until steady state at t̄2; and finally stage 3 starts at t̄2 and
achieves a steady state at t̄3. The time lags to achieve steady state in stages 1 and 3 are denoted by t̄ (1)lag and t̄ (3)lag , respectively; both

time lags are identified by the instant when the normalised flux J̄ attains a value of 0.63. The parameter η (such that 0 ≤ η ≤ 1)
is the ratio of lattice occupancy applied in stage 2 to that applied in stage 1, at x̄ = 0. Steady state in stage 2 is identified by the
flux J̄ → η

Foster model requires rate constants for the trap kinetic equations, and the experimental determination of these
is complicated. Oriani [13] simplified the analysis by assuming that hydrogen atoms at lattice and trap sites are
in local equilibrium due to very fast trapping and detrapping. The local equilibrium condition implies that the
differential equation for trap kinetics is replaced by an algebraic relation between the hydrogen concentration
in the lattice and in the traps.

Thermal desorption spectrometry (TDS) and electrochemical permeation (EP) experiments are commonly
used to measure the characteristics of hydrogen diffusion and trapping in alloys, including trap densities and
trap binding energies (and thereby the type of traps) [14–16]. In a TDS test, the temperature of a hydrogen-
containing sample is increased at a fixed rate and the rate of hydrogen desorption from the sample is measured.
In contrast, EP tests are performed at a fixed temperature and a fixed hydrogen concentration is imposed on the
front, hydrogen-inlet side of a plate-like specimen whereas a vanishing hydrogen concentration is imposed on
the rear, hydrogen-outlet side of the specimen, of thickness L . In a single stage test, the hydrogen concentration
is initially very low in the specimen, and upon imposing a finite fixed concentration on the inlet side, the rate
of hydrogen efflux from the outlet side increases in a transient manner until it achieves a steady state value.
Recently, Raina and co-workers conducted an analytical and numerical analysis of TDS [17] and of single-
stage EP [10,18] experiments. The regimes of behaviour of hydrogen diffusion were mapped out, producing
design maps that serve as guidelines for a determination of trap characteristics.

Three stage EP tests [19–22] give additional insight into lattice diffusivity in the presence of deep traps, and
reveal the effect of irreversible traps upon hydrogen transport. Irreversible or deep traps are those associated
with a large enthalpy of trapping in relation to the activation energy for diffusion of hydrogen in the lattice.
On the other hand, reversible or shallow traps have enthalpies comparable to the self-activation energy for
hydrogen diffusion in the lattice.

The three stage EP test [19–22] is described in Fig. 1. The test is performed in accordance with the ASTM
standard G148-97 (2011) using the double-cell apparatus proposed by Devanathan and Stachurski [23]. In
the first stage, a fixed value of charging current density enforces a constant concentration of hydrogen on the
front side of the plate-like specimen. Hydrogen permeates through the specimen and a rising flux of hydrogen
is measured at the exit side until a steady state value is attained. In the second stage, the charging current is
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switched to a very low value (background current) in order to ensure that a low value of free, lattice hydrogen
is attained throughout the thickness of the specimen. Finally, in the third stage, the same current density as
that in the first stage is applied, and the transient flux of hydrogen is measured on the exit side until a steady
state is again established. It is generally assumed that the irreversible traps are full at the end of the first stage
such that only lattice hydrogen and reversible traps are operative in the second and third stages. The aim of
the present study is to explore the sensitivity of hydrogen diffusion in a three stage EP test to the presence of
traps.

The remainder of this study is organised as follows. In Sect. 2, the theory of hydrogen diffusion in a metallic
alloy is summarised. The governing partial differential equation (PDE) for one dimensional lattice diffusion in
the presence of traps is presented in terms of suitable non-dimensional groups. The boundary conditions and
initial state for solving the governing PDE in the three stage EP test are given. In Sect. 3, the main results from
an asymptotic analysis of the first stage of an EP test are summarised from [10]. Finally, in Sect. 4, numerical
simulations of the three stage EP tests are presented.

2 Theory of diffusion of hydrogen in a three stage EP test

2.1 Kinetics of hydrogen diffusion

Hydrogen atomsoccupynormal interstitial lattice sites (NILS) and, additionally, can reside at trapping sites such
as interfaces or dislocations. The total hydrogen concentration C is the sum of lattice hydrogen concentration
CL and trapped hydrogen concentration CT . The distribution of lattice concentration CL(x, t) in space x and
time t is dictated by Fickian diffusion over the NILS. However, when the lattice contains traps, hydrogen
diffusion is modified by both trapping and detrapping of hydrogen atoms [9]. Mass conservation dictates that
the rate of change of total concentration equals the net flux of diffusing hydrogen atoms CL(x, t) and, in
one-dimensional form, this can be written as

∂ CL

∂t
+ ∂ CT

∂t
= DL

∂2CL

∂x2
. (1)

Here, DL = D0exp(−Q/RT ) is the lattice diffusion coefficient and is expressed in terms of the temperature
T , lattice activation energy Q, diffusion pre-exponential factor D0 and the universal gas constant R.

It is convenient to introduce the lattice and trap occupancy fractions θL and θT , respectively, by re-writing
the lattice and trap concentrations in the form CL = θL β NL and CT = θT α NT . Here, β is the number of
NILS per lattice atom, NL is the number of lattice atoms per unit volume, α is the number of atom sites per
trap and NT is the number of trap sites per unit volume. We emphasise that 0 ≤ θL ≤ 1 and 0 ≤ θT ≤ 1.
Using these relations and assuming that the number of trap sites remains constant, Eq. (1) can be re-written as

∂ θL

∂t
+

(
αNT

βNL

)
∂ θT

∂t
= DL

∂2θL

∂x2
. (2)

The net rate of trapped hydrogen concentration ∂θT /∂t is obtained by considering the kinetics of trapping and
detrapping, using standard rate theory [23], summarised as follows.

Oriani [13] assumed that the rate of trapping and detrapping is sufficiently fast for local equilibrium to
exist between the hydrogen atoms at lattice sites and at trap sites [17], such that,

θT

1 − θT
= K

θL

1 − θL
(3)

For the practical case where θL � 1, we have

θT = K θL

1 + K θL
(4)

where the equilibrium constant K is given in terms of the trap binding energy �H as

K = exp

{−�H

RT

}
. (5)

The Oriani assumption of local equilibrium has been explored by Raina et al. [17] (see their Supplementary
Information). They show that local equilibrium is maintained for both trapping and detrapping when the
hopping rate is of realistic magnitude. Recall that the temperature T is held constant in EP tests.
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2.2 Governing diffusion equation with local equilibrium

Assume that local equilibrium exists between hydrogen atoms at the lattice and the trap sites [10]. Then, upon
making use of (4)–(5), the PDE (2) can be re-cast in the simpler form

∂ θL

∂t

[
1 + αNT K

βNL(1 + K θL)2

]
= DL

∂2θL

∂x2
, (6)

Identification of an appropriate set of non-dimensional groups leads to a much simpler statement of the
governing PDE as follows.

2.3 Non-dimensional groups and governing PDE

Consider a one-dimensional specimen of length L spanning the domain 0 ≤ x ≤ L . Introduce the following
non-dimensional quantities: spatial coordinate x̄ ≡ x/L , time t̄ ≡ t DL/L2, trap density N̄ ≡ (αNT )/(βNL),
lattice activation energy Q̄ ≡ Q/(RT ), trap binding energy�H ≡ �H/(RT ) and fractional lattice occupancy
θ̄L = θL/θ0L , where θ0L is the initial lattice occupancy fraction. Then, Eq. (6) reduces to

∂θ̄L

∂ t̄

[
1 + K N̄(

1 + ((K θ0L)2(θ̄L)2)

]
= ∂2θ̄L

∂ x̄2
. (7)

It is evident that the PDE delivers θ̄L as a function of x̄ at any time t̄ , for any assumed values of K N̄ and K θ0L .
This PDE can be simplified and solved for extreme choices of K N̄ and K θ0L , as discussed below.

2.4 Initial condition and boundary conditions for the three stage EP test

Numerical simulations are performed of the three stage EP test, with two rise transients in stages 1 and 3
[19]. Consider the one-dimensional EP experiment with hydrogen introduced into an initially hydrogen-free
specimen of length L at time t = 0 at the front face of the specimen, x = 0. The lattice occupancy fraction at
the exit face x = L during all stages of the test is maintained at zero.

The scope of the present study is limited to the case where the rate of permeation is controlled by hydrogen
diffusion through the alloy rather than the rate of surface reactions that produce the hydrogen and the rate of
hydrogen transfer into the alloy. The test procedure in the ASTM G148-97 (2011) standard demands that the
thickness of the alloy is sufficient to ensure that diffusion controls the rate of permeation. It is also assumed that
the rate of surface reaction is taken to be sufficiently high that a concentration boundary condition is appropriate
rather than a flux boundary condition. Although the term galvanostatic permeation test is commonly used for
electro-permeation tests, the flux of hydrogen through the alloy specimen is often limited by diffusion with
a boundary condition of concentration on the entry side rather than a prescribed flux of hydrogen into the
specimen. It is straightforward to perform a numerical analysis of hydrogen permeation with other boundary
conditions enforced, such as a prescribed entry flux of hydrogen see for example Pumphrey [24]. But this is
beyond the scope of the present study.

In the first stage of the three stage EP test, the occupancy of lattice hydrogen is maintained at θ0L at x̄ = 0
until a steady state efflux is achieved at time t̄1. The second stage starts at time t̄1, and the charging condition
at x̄ = 0 is dropped to ηθ0L . The fraction η dictates the amount of lattice hydrogen that diffuses out of the
specimen in the second stage. We restrict the range of η to η ∈ [0.001, 0.1]. The second stage continues until
the flux has dropped to a steady state value at time t̄2. It is commonly assumed that, at the end of the second
stage, the residual concentration of lattice hydrogen is negligible while deep traps remain full. The third stage
of the test starts at time t̄2 and the charging condition at x̄ = 0 is again set to θ0L ; the efflux increases until a
steady state is attained at time t̄3.

The boundary conditions and initial conditions to solve (7) are:

• Stage 1:

θ̄
(1)
L =

{
1 : x̄ = 0
0 : x̄ = 1

and θ
(1)
L (x̄, t̄ = 0) = 0 (8)
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• Stage 2:

θ̄
(2)
L =

{
η : x̄ = 0
0 : x̄ = 1

and θ
(2)
L (x̄, t̄ = t̄1) = θ

(1)
L (x̄, t̄1) (9)

• Stage 3:

θ̄
(3)
L =

{
1 : x̄ = 0
0 : x̄ = 1

and θ
(3)
L (x̄, t̄ = t̄2) = θ

(2)
L (x̄, t̄2) (10)

where the fractional occupancy fraction θ̄
(i)
L corresponds to each stage i.

The flux of hydrogen J measured at the exit face (x = L ) is given by

J (t) =
(−DLβNLθ0L

L

)
∂θ̄L

∂ x̄
(11)

This flux J represents the number of hydrogen atoms exiting the specimen per unit area per unit time. In the
following, we shall present a normalised flux J̄ = J/Jss where Jss is the steady-state flux given by

Jss = DL βNLθ0L

L
. (12)

We define the time lags t̄ (1)lag and t̄ (3)lag in stages 1 and 3, respectively, as the time required for the flux to attain

the value J̄ = 0.632 from the start of each stage [25]. Recall that a sketch of the boundary conditions in the
three stage EP test, with resulting efflux transients is given in Fig. 1.

3 Overview of the asymptotic analysis in Stage 1

In order to help guide the interpretation of numerical results, we first recall the regimes of behaviour by
asymptotic analysis of the single-stage EP test [10]. These relations, formulated in terms of t̄lag, also inform
the permeation transients in stage 3 of EP tests. The time lag values given in this section corresponds to the
time lag t̄ (1)lag in stage one but the superscript 1 is dropped for conciseness. As shown in Fig. 2, four distinct
regimes of behaviour are identified.

Regime I: The shallow trap limit with K θ0L � 1. In this regime, traps have low occupancy and diffusion takes
place with an effective diffusion coefficient Deff = DL/(1 + K N̄ ). The time lag t̄lag for hydrogen to reach
x̄ = 1 is given by [10]

t̄lag = 1 + K N̄

6
. (13)

Regime II: The deep trap limit with K θ0L � 1 and high trap density such that
K N̄

(K θ0L)
2 � 1. In this case, the

traps are full. The solution as derived in [10] reads

t̄lag = 1

2

(
K N̄

K θ0L

)
. (14)

Regime III: The deep trap limit with K θ0L � 1 but low trap density such that
K N̄

(K θ0L)
2 ≤ 1. The traps are again

full with θT = 1. Two sub-regimes are identified in [10]:
Case a for which K θ0L/K N̄ � 1. Here,

t̄lag = π

4

(
K N̄

K θ0L

)2

(15)
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(1)

Fig. 2 Sketch of the time lag t̄ (1)lag versus K θ0L , to illustrate the four regimes of behaviour as deduced from the asymptotic analysis

of the EP test in [10]. The regimes are marked on the map for a fixed value of K N̄ . Modified from [10]

Case b for which K θ0L/K N̄ ≈ 1. Here,

t̄lag = 1

6
. (16)

Note that, apart from the diffusion in regime IIIb, the lag time for diffusion of hydrogen is affected by the trap
characteristics (K N̄ , K θ0L).

The regime map shown in Fig. 2 is based on Eqs. (13), (14), (15) and (16) corresponding to regimes I,
II, IIIa and IIIb, respectively. For a given K N̄ , the response transitions from regime I to II to IIIa and finally
regime IIIb with increasing K θ0L . At a very low value of K θ0L the trap occupancy is negligible and the response
lies in regime I with t̄lag independent of K θ0L . With increasing K θ0L the behaviour transitions to regime II and
in this second regime t̄lag is inversely proportional to K θ0L . A further increase in K θ0L results in regime IIIa

and t̄lag scales inversely with
(
K θ0L

)2
. Finally, at large values of K θ0L , regime IIIb is entered and t̄lag again

becomes independent of K θ0L ; however, in contrast to regime I, Fickian diffusion occurs within the lattice.
The diffusion model of the current study can be extended in a straightforward manner when the alloy contains
multiple traps of varying density and binding energy. Assume that diffusion occurs within the lattice and that
each type of trap acts independently from its neighbours. TheOriani relation (3) is used to determine the density
of each type of trap in terms of its binding energy and lattice occupancy. Additionally, the above analytical
formulae for the time lag in a single stage EP test and single type of trap can be modified in a straightforward
manner for multiple traps provided that each type of trap has a density and binding energy that places the
response in the same regime I to III. For example, consider an alloy that contains n types of trap, such that
for each type i of trap has an equilibrium constant Ki , number of traps Ni per unit volume, and number of
hydrogen atom sites αi . The non-dimensional trap density for this trap is N̄i = αi Ni/(βNT ). Then if all of the
traps are shallow such that Kiθ

0
L << 1 the alloy has a lag time for hydrogen to reach x̄ = 1 of

t̄lag = 1 + ∑n
i=1 Ki Ni

6
(17)

and regime I behaviour is maintained when the single type of trap is replaced by multiple traps. In similar
manner, the expressions for the time lag in regimes II and III can be generalised for multiple traps provided
each trap, when existing alone, gives a response in the same regime.
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There is no simple extension of the analytical formulae for the lag time when the alloy contains traps of varying
density and binding energy such that each type of trap when present alone gives a different regime of response.
Although full numerical predictions can still be made, the number of parameters that are introduced by the
presence of multiple traps is sufficiently large that it is prohibitive to give a complete overview of the response
over all of parameter space. Instead, a restricted set of numerical simulations can be performed for an assumed
distribution of traps. This approach has been explored for single stage EP tests by Kirchheim [26], for example.
The present study is a first attempt to identify the effect of trap density and binding energy upon the relative
time lag in the first and third stages of a 3 stage EP test. Accordingly, we consider the idealised case of a single
population of traps of fixed binding energy rather than a distribution of traps. It is recognised that a distribution
of trap binding energies can exist for commercial alloys but it is beyond the scope of the present preliminary
study to address this more complex case involving a specific choice of a density distribution of multiple traps.

4 Numerical analysis of three stage EP tests

Theoretical insight is now gained into hydrogen transport in the three stage EP test by solving the governing
PDE (7), subject to the appropriate initial and boundary conditions (see Sect. 2.4). The PDE (7) is solved
numerically by using the partial differential equation solver pdepe in MATLAB.1

We proceed to consider 3 representative EP tests A, B and C on a ferritic steel; the steel has a fixed value
of trap depth and density. The trap binding energy is fixed at �H = −13.81 corresponding to K = 106 and
the trap density is assumed to be N̄ = 10−3, implying that K N̄ = 103. Each test is a three stage EP test and
the lattice hydrogen occupancy on the entry face of the EP specimen is taken to be θ0L = 10−7, 10−4 and 10−2

for tests A, B and C, respectively. The aim is to show that the tests A to C have significantly different single
stage EP responses and likewise have significantly different 3 stage EP responses. Particular emphasis will be
placed on the ratio of lag time in stages 1 and 3 for each test A to C.

For test A, choose θ0L = 10−7 such that K θ0L = 10−1, and consequently the response lies within regime I
for a single stage EP test. The small value of K θ0L implies that the trap occupancy θT is small, and is on the
order of K θL . In the 3 stage EP test, take η = 0.1 for charging of the sample in stage 2. The trap occupancy
at the end of stages 1 and 2 remain small, see Fig. 3d, and the efflux in each stage is potted in Fig. 3a. The
transient in efflux is comparable for stages 1 and 3, consistent with the fact the trap occupancy is low at the
end of stage 2.

Second, for test B, choose θ0L = 10−4 such that K θ0L = 102, K N̄/(K θ0L)
2 = 0.1 and K θ0L/K N̄ = 0.1.

Consequently, the response lies within regime IIIa for a single stage EP test. In the 3 stage EP test, again with
η = 0.1 for charging of the sample in stage 2, the trap occupancy at the end of stages 1 and 2 is high except
near the outlet face of the specimen, see Fig. 3e. Consequently, the duration of the efflux transient in stage 3
is significantly shorter than in stage 1, see Fig. 3b.

Third, for test C, choose θ0L = 10−2 such that K θ0L = 104, K N̄/(K θ0L)
2 = 10−5 and K θ0L/K N̄ = 10.

Consequently, the response lies within regime IIIb for a single stage EP test. In this regime, the traps play a
negligible role and hydrogen permeation is dictated by Fickian diffusion through the lattice. The trap occupancy
is close to unity, see Fig. 3f, and the effluxes in stage 1 and 3 are similar, see Fig. 3c.

The dependence of t̄lag upon K θ0L for stages 1 and 3 of a three stage EP test is plotted is plotted in Fig. 4 for
selected values of K N̄ in a map similar to Fig. 2. The predictions are the full numerical solution to the PDE
(7). The lag time for stage 3 is comparable to that for stage 1 except in an intermediate regime that corresponds
to regimes II and IIIa of the asymptotic analysis for stage 1. The 3 tests A, B and C have been added to the
figure as discrete data; again, it is clear that test B is the only case where the lag time for diffusion in stage
3 is significantly faster than that in stage 1. The shape of the curves of t̄lag versus K θ0L follows that shown
in the sketch of Fig. 2. However, the full extent of the sigmoidal curves is not shown in all cases in order to
emphasise the practical regime of parameter space.

It is very challenging to attempt to come up with an inverse engineering approach to determine the various
diffusion and trap parameters from the results of a limited number of 3 stage electro-permeation tests. As a

1 The pdepe solver is based on the method of lines which converts the given PDE into a system of initial value problems. In
this method, the spatial derivatives are replaced with algebraic approximations and the remaining time derivatives are solved as
a system of ordinary differential equations. An automatic time-stepping routine in pdepe solver ensures temporal convergence is
achieved in each solution step. All simulations used a uniform mesh with element size. A preliminary mesh sensitivity study was
performed, along with a check on the time increments used, in order to ensure that the solution had converged.
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Test A(a) Test B(b) Test C(c)

(d) (e) (f)

Fig. 3 Numerical simulations of three stage EP tests performed in different regimes. The normalised flux J̄ versus time t̄ in three
stages for each regime are shown in the top row and the distributions of trap occupancy θT over the specimen thickness 0 ≤ x̄ ≤ 1
at the end of stages 1 and 2 are shown in the bottom row. Results of test A are plotted in a and d where θ0L = 10−7 is used, test
B in b and e where θ0L = 10−4 is used, and test C in c and f where θ0L = 10−2 is used. In all cases, K = 106 (�H = −13.81),
N̄ = 10−3 and η = 0.1

first step in developing such a procedure, the data of Fig. 4a is replotted in the form of the ratio of time lag for
stages 3 and 1, for the choice θ0L = 10−6, see Fig. 4b. The lag time for stage 3 is much less than that in stage
1 when there is a high density of deep traps. Otherwise, the lag times are similar for stages 3 and 1. Thus, a
knowledge of the measured ratio of lag times, along with the known density of traps, gives the trap binding
energy when a single trap is present. A similar cross-plot of the data of Fig. 4a can be used for other choices
of value of θ0L .

4.1 Case study

Consider a ferritic steel with lattice activation energy Q = 6.7 kJ mol−1, diffusion pre-exponential factor
D0 = 2 × 10−7m2s−1 and lattice site density NL = 8.46 × 1028atoms · m−3 [27], with α = β = 1. Let the
test temperature be T0 = 293 K such that the non-dimensional lattice activation energy is Q̄ = 2.75. Assume
a physically relevant range of trap binding energy from −22 kJ mol−1 to −56 kJ mol−1. The trap density NT
is taken to be in the range (10−3 − 10−6)NL , hence 10−6 ≤ N̄ ≤ 10−3, as assumed by [13].

In Fig. 5, we explore the permeation transients in the first and third stages of EP over the complete physical
range of parameters �H , N and θ0L . As defined in Sect. 2.4, we calculate the time lag values t̄ (1)lag and t̄ (3)lag , in

stages 1 and 3 respectively, when J̄ = 0.63. Limit attention to η = 0.1, trap density N̄ ∈ [10−6, 10−3] and trap
binding energy�H ∈ [−23, −9] (such that K ∈ [104, 1010]) and perform simulations for θ0L ∈ [10−7, 10−2].
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101
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(3)
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B

Test A

10-6 10-5 10-4 10-3
10-2

10-1

100

(1)

(3)

(a)

(b)

Fig. 4 a Dependence of t̄lag upon K θ0L in a three stage EP test for selected values of K N̄ . Results are shown for both stage 1
(dashed lines) and stage 3 (solid lines). Tests A, B and C have been added as discrete data. b The ratio of lag-times in stages 3
and 1 as a function of trap density, for selected values of trap binding energy (expressed in terms of equilibrium constant), for
θ0L = 10−6. These data are a cross-plot from a of the figure

In order to identify the regimes of diffusion, we plot the predictions in terms of t̄lag versus θ0L , similar to Fig. 2.
The results for K = 1010 (�H = −23.03) are plotted in Fig. 5a for the selected values of N̄ . The permeation
transients in stage 1 reside in regimes II or III; for example, the plot for N̄ = 10−6 lies in regime II when
θ0L < 10−5 and otherwise in regime IIIb. The time lag values t̄ (3)lag in stage 3 are orders of magnitude smaller

than t̄ (1)lag at any given N̄ . For θ0L ≥ 10−5, permeation transients in stage 3 obey lattice diffusion whereas the

corresponding permeation transients in stage 1 are in regime I. Thus, traps of binding energy �H < −20
represent irreversible traps which get filled during stage 1 permeation, and lead to lattice diffusion during stage
3.

In similar fashion, time lag predictions for stages 1 and 3 are obtained for K = 108 (�H = −18.42),
K = 106 (�H = −13.81) and K = 104 (�H = −9.21), see Fig. 5b–d, respectively. It can be observed that,
for lower values of trap binding energy (�H > −10), permeation transients in stages 1 and 3 have similar
time lags. This corresponds to the reversible trap type, such that hydrogen empty from the traps in stage 2.
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(a) (b)

(c) (d)

Fig. 5 Simulation results of time lag t̄ (1)lag and t̄ (3)lag in stages 1 and 3, respectively, on the y-axis are plotted against the initial lattice

occupancy fraction 10−7 ≤ θ0L ≤ 10−2 on x-axis. Results are shown for a K = 1010 (�H = −23.03), b K = 108 (�H =
−18.42), c K = 106 (�H = −13.81), and (d) K = 104 (�H = −9.21). In each of the plots, N̄ is varied from 10−6 to 10−3.
For all simulations, η = 0.1. Depending on the combination of parameters {K , N̄ , θ0L }, diffusion in stage I may take place in
regime I, II or IIIb which can be easily identified by the value of the slope of plots as schematically shown in Fig. 2. Time lag
values t̄ (3)lag in stage 3 resembles the values of lattice diffusion only for deep traps when K > 108 and θ0L ≥ 10−5 for all quoted

values of N̄

For the most shallow trap considered, K = 104 (�H = −9.21), hydrogen permeation lies in Regime I, and
lattice-driven diffusion is not observed even for the largest θ0L considered.

Finally, we investigate the role of the parameter η which characterises the magnitude of the background
current in stage 2. The simulations of Figs. 5a and c for η = 0.1 are repeated for η = 0.05 and 0.001 in Fig. 6.
The results show that it takes longer to achieve steady state in stage 2 of the EP test with decreasing η: more
hydrogen diffuses out of traps in stage 2 when η is reduced. Consequently, the time lag for permeation of flux
in stage 3 increases with decreasing η. In broad terms, the sensitivity of the stage 3 transient to the value of η
is greatest for deep traps (high binding energy).
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(a) (b)

Fig. 6 Effect of parameter η ∈ [0.001, 0.1] on time lag values t̄ (3)lag in stage 3 of EP tests. Results are shown for a K = 1010 (�H =
−23.03) and b K = 106 (�H = −13.81) where N̄ is varied from 10−6 to 10−3 in both cases. The effect of η is only significant
for deep traps �H ≤ −23.03 (�H ≤ −56kJ/mol)

5 Conclusions

We have presented a numerical analysis of the three stage electro-permeation (EP) experiment. Stage 1 is
characterised by a rising permeation flux until steady state is achieved for the given charging condition. In
stage 2, the input charging condition is reduced to a fraction of the stage 1 charging condition so that hydrogen
is released from both the lattice and trap sites of low binding energy. Stage 2 is immediately followed by stage
3 where the charging conditions of stage 1 are reimposed. The difference between the rising permeation fluxes
in stages 1 and 3 stems from the level of trap occupancy that persists at the end of stage 2. The analysis is
framed in terms of regimes of behaviour, as characterised by the lag times. A universal map to give insight
into the relative response of stages 1 and 3 has been generated. The regimes of the map are in good agreement
with analytical expressions for diffusion rate in the first stage of a 3 stage EP test.

• In regime I, most of hydrogen that has been trapped in stage 1 exhausts from the outlet face at the end of
stage 2. In contrast, in regimes II and III only a small fraction of the trapped hydrogen has diffused out at
the end of stage 2.

• Deep traps (�H < −20) are filled during stage 1 and do not interfere with lattice diffusion during stage
3. In contrast, traps of �H > −20 release hydrogen into the lattice during stage 2.

• Stage 3 time lags can be orders of magnitude smaller than those of stage 1 in the presence of deep traps,
thereby facilitating the quantification of the lattice diffusivity from the stage 3 response. However, for traps
of low and medium binding energies, the differences between the responses in the first and third stages of
a three stage EP test are small.
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