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Abstract
A nonlinear phase-field model is developed to simulate corrosion damage. The
motion of the electrode−electrolyte interface follows the usual kinetic rate the-
ory for chemical reactions based on the Butler−Volmer equation. The model
links the surface polarization variation associated with the charging kinetics of
an electric double layer (EDL) to the mesoscale transport. The effects of the
EDL are integrated as a boundary condition on the solution potential equation.
The boundary condition controls the magnitude of the solution potential at the
electrode−electrolyte interface. The ion concentration field outside the EDL
is obtained by solving the electro−diffusion equation and Ohm’s law for the
solution potential. The model is validated against the classic benchmark pencil
electrode test. The framework developed reproduces experimental measure-
ments of both pit kinetics and transient current density response. The model
enables more accurate information on corrosion damage, current density, and
environmental response in terms of the distribution of electric potential and
charged species. The sensitivity analysis for different properties of the EDL
is performed to investigate their role in the electrochemical response of the
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system. Simulation results show that the properties of the EDL significantly
influence the transport of ionic species in the electrolyte.

Keywords: diffuse interface, electrochemistry, corrosion damage,
equivalent circuit model

Nomenclature

Greek letters

α Anodic charge transfer coefficient
ϕ Phase-field variable
ψl Electric potential
ψdl
l Electric potential outside EDL

ψref
l Reference electric potential

ψ0 Initial surface polarization
χ Ratio between EDL resistance and electrolyte resistance
ω Height of the double well potential
Γ Interfacial energy
Ω Domain investigated
ζ Electric potential source term
η Overpotential
κ Gradient energy coefficient
λ Effective electric conductivity
λl Electric conductivity of the liquid domain
λs Electric conductivity of the solid domain
µθ
i Reference chemical potential
ξ Geometrical factor

Lowercase letters
−→c Set of ionic concentrations
f chem Chemical free energy density
f elec Electric free energy density
f grad Interfacial energy density
f chemi Chemical free energy density of component i
f cheml Chemical free energy density of the liquid phase
f chems Chemical free energy density of the solid phase
g(ϕ) Double well potential shape function
h(ϕ) Interpolation function
h ′(ϕ) Derivative of interpolation function with respect to phase-field parameter
ia Anodic current density
ci Concentration of ionic species i
i0 Exchange current density
k1b Backward reaction constant for primary hydrolysis
k1f Forward reaction constant for primary hydrolysis
k2b Backward reaction constant for water dissociation
k2f Forward reaction constant for water dissociation
tc Half-time capacitor charging constant
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zi Charge number of component i
c̄i Normalized ionic concentration of component i
c̄l1 Normalized concentration of metal ions in the liquid phase
c̄s1 Normalized concentration of metal ions in the solid phase
cl,eq1 Equilibrium concentration of metal ions in the liquid phase
cs,eq1 Equilibrium concentration of metal ions in the solid phase
c̄l,eq1 Normalized equilibrium concentration of metal ions in the liquid phase
c̄s,eq1 Normalized equilibrium concentration of metal ions in the solid phase

Uppercase letters

A Free energy density curvature parameter
K1 Equilibrium constant for primary hydrolysis reaction
K2 Equilibrium constant for water dissociation
L Enhanced phase-field mobility parameter
L0 Constant interfacial mobility parameter
R Gas constant
Rdl Electric double layer resistance
Ri Volumetric reaction rate of component i
Rl Electrolyte resistance
T Absolute temperature
Vm Molar volume of metal
Cdl Electric double layer capacitance
Di Effective diffusion coefficient of component i
Dl
i Diffusion coefficient of component i in liquid phase

Ds
i Diffusion coefficient of component i in solid phase

Eapp Applied potential difference with respect to reference electrode
Eeq Equilibrium corrosion potential with respect to reference electrode
F Faraday’s constant
Ji Electrochemical flux of component i

Others

ℓ Interface thickness
∂Ω Domain boundary
∂Ωl Domain boundary of electrolyte
∂Ωm Domain boundary of metal
F Free energy functional
EDL Electric double layer
ECM Equivalent circuit model
SCE Saturated calomel electrode

1. Introduction

Pitting corrosion is a particular form of localized corrosion that occurs after a breakdown of
the passive film on a metal surface [1]. The pH and the concentration of aggresive ions in
the environment dictate the stability of the passive film. The pitting resistance of materials
is determined by electrochemical testing, exposing materials to a chloride-rich environment
and low pH [2, 3]. The associated environmental interactions alter the stability of the passive
film and promote pitting [4]. This type of corrosion requires consideration in the design as it
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alters the service life of engineering components operating in aggressive environments. Late
detection and prevention can result in premature failure and disastrous events [5]. It is essential
to quantify the pH levels and the concentration of aggressive ions to understand the pitting
corrosion of materials.

Assessing pitting corrosion damage and measuring the concentration of aggressive ions
and pH at the metal−electrolyte interface remains challenging due to the unavoidable local-
ized behavior, length, and time scales of the problem. Computational simulations can expand
the reach of experimental studies to length and time scales that are difficult to investigate other-
wise. Various computational models have been developed to predict the corrosion performance
of materials, including Lagrangian-Eulerian approaches [6–8], peridynamics [9, 10], level set
methods [11, 12], cellular automata models [13–15], and phase-field method [16–26]. In addi-
tion to uniform and galvanic corrosion, pit growth in different materials exposed to various
environments is captured with these models. Moreover, the role of mechanical fields [13–15,
23–25], electrochemistry [20, 22, 26], and crystallographic orientation [18, 27, 28] in govern-
ing pit growth, pit-to-crack transition, and crack propagation have been integrated into com-
putational frameworks. However, the motion of ionic species in the electrolyte is simplified
and not thoroughly captured in these models. Although surface processes are critical in ion
transport, they are neglected in obtaining the solution potential distribution [20, 22, 24, 26,
29–33]. More insights into surface effects and mechanisms governing interfacial ion transport
remain to be included in computational models.

The formation and charging kinetics of an EDL formed at the interface between the elec-
trode and the electrolyte play a significant role in driving the transport of ionic species and
electric potential [34]. However, despite its contribution to the electrochemical response of the
environment, the role of the EDL has not been considered in numerical models [6–33]. The
main obstacle in incorporating the EDL into computational frameworks is ascribed to the nano-
scale at which the EDL occurs. The electrochemical phenomena associated with the charging
kinetics of the EDL have been considered at a much lower scale [35–37], which is unpractical
for engineering applications. Recently, a phase-field formulation for assessing corrosion in
polycrystalline materials that considers the charging kinetics of the EDL has been developed
[38]. The formulation integrates the effects of the EDL on the motion of ionic species and
electric potential without explicitly introducing it in the numerical framework, overcoming
the length scale limitation. It utilizes an ECM to characterize the properties of the EDL, such
as its resistance and capacitance. The present work expands on this phase-field formulation
[38] by examining the role of the properties of the EDL in the motion of species in the solu-
tion, electric potential distribution, and corrosion damage. The present investigation provides
a more quantitative assessment of corrosion damage, concentration of aggressive ions, and pH
within the electrolyte.

The outline of the paper is as follows. The corrosion mechanism and electrochemistry are
described in section 2 and the computational framework based on the phase-field method is
subsequently formulated. The model is validated against the classic benchmark pencil elec-
trode test [39] in section 3. After validation, the effect of the properties of the EDL on pit
kinetics, current density, and the distribution of electric potential and ionic species are presen-
ted. The advantages and disadvantages of the present model, along with the comparison with
existing models in the literature, are discussed in section 4. Conclusions of the investigation
are summarised in section 5.
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2. Computational framework

2.1. Underlying electrochemistry

Wet air or aqueous environments break down the protective film formed on metal surfaces,
exposing the metal surface to a corrosive environment and initiating corrosion. The following
reactions can be used to summarize the corrosion process [5]

M(s) →Mz1+
(aq) + z1e

−(metal dissolution) (1)

Mz1+
(aq) +H2O

k1f−⇀↽−
k1b

M(OH)(z1−1)+
+H+(primary hydrolysis) (2)

H2O
k2f−⇀↽−
k2b

OH− +H+(water dissociation), (3)

where M is the corroded metal, z1 is the charge number, k1f, k2f, k1b, and k2b are the forward
and the backward reaction constants. The description in equations (1)–(3) does not consider
the precipitation of stable phases such as salts and oxides. The oxides are not treated in the
present model under the assumption that the simulated environment is harsh enough to prevent
surface passivation. The presence of salts is incorporated as the equilibrium concentration of
metal ions in the liquid phase, as discussed below in sections 2.2 and 3.1.

2.2. Kinetics and thermodynamics

Figure 1 depicts the electrochemical system considered. A set of concentrations of
ionic species represented by −→c = (c1 =Mz1+,c2 =M(OH)(z1−1)+,c3 = H+,c4 = OH−,c5 =
Na+,c6 = Cl−) describes the reactions in equations (1)–(3) and the surrounding environment.
AlthoughNa+ and Cl− ions are not considered in the above reactions, their presence influences
the movement and distribution of remaining ions since they are charged particles. The conduct-
ivity of the electrolyte is a function of all ionic species and influences the solution potential
distribution (section 2.3.3). The electrode and the electrolyte domains are distinguished by
the phase-field variable: ϕ= 1 represents the electrode, ϕ= 0 corresponds to the electrolyte,
and 0< ϕ < 1 indicates the thin interfacial region between the phases (electrode−electrolyte
interface). The independent kinematic variables necessary for the model description are the
phase-field parameter that describes the evolution of the corroding interface ϕ(x, t), the
concentration variable ci(x, t) for each ionic species considered, and the electric potential
ψl(x, t).

The free energy functional of a heterogeneous system occupying the domain Ω (figure 1)
with contributions from the chemical free energy density f chem, interfacial energy density f grad,
and electric free energy density f elec can be represented as

F =

ˆ
Ω

[
f chem

(−→c ,ϕ)+ f grad (∇ϕ)+ f elec
(−→c ,ψl)] dΩ. (4)

The chemical free energy density f chem is given as

f chem
(−→c ,ϕ)= f chem1 (c̄1,ϕ)+

∑
i=2

f chemi (c̄i)+ωg(ϕ) , (5)

where f chem1 (c̄1,ϕ) and f chemi (c̄i) (i ̸= 1) are the chemical free energy densities as a function
of normalized ion concentrations c̄i = ciVm. Vm denotes the molar volume of the metal. In
the previous equation, g(ϕ) = 16ϕ2(1−ϕ)2 is the double-well potential with minima at ϕ= 0
(electrolyte) and ϕ= 1 (electrode) and ω = 3Γ/(4ℓ) represents the energy barrier height at
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Figure 1. Schematic of equivalent circuit model and phase-field description of the metal
and corrosive environment phases.

ϕ = 1/2 [40]. Here, Γ is the interfacial energy and ℓ is the chosen interface thickness. The
chemical free energy density f chem1 (c̄1,ϕ) is represented as [41]

f chem1 (c̄1,ϕ) = (1− h(ϕ)) f cheml

(
c̄l1
)
+ h(ϕ) f chems (c̄s1) , (6)

where f cheml (c̄l1) and f
chem
s (c̄s1) stand for the chemical free energy densities of the liquid and

solid phases. They are expressed as a function of normalized metal ion phase-concentrations
within the liquid c̄l1 and the solid phases c̄s1. h(ϕ) = ϕ3(10− 15ϕ+ 6ϕ2) is a monotonically
increasing interpolation function. For simplicity, the chemical free energy densities f cheml (c̄l1)
and f chems (c̄s1) are represented by parabolic functions with the same density curvature parameter
A as

f cheml

(
c̄l1
)
=

1
2
A
(
c̄l1 − c̄l,eq1

)2
f chems (c̄s1) =

1
2
A
(
c̄s1 − c̄s,eq1

)2
, (7)

where c̄l,eq1 = cl,eq1 Vm and c̄s,eq1 = cs,eq1 Vm = 1 are the normalized equilibrium phase concentra-
tions. Alternative ways for describing the chemical free energy density using first-principles
calculations and thermodynamic databases [42] will be addressed in future work. The para-
meter A serves as an energetic penalty for departing from the equilibrium concentration
[43]. The equilibrium phase-concentration in the liquid phase cl,eq1 is determined based on
the solubility of salts formed on the exposed metal surface as the formation of corrosion
products and the passive film are neglected in the present corrosion mechanism, equations (1)–
(3). The normalized concentration of metal ions is given as a function of c̄l1 and c̄s1: c̄1 =
(1− h(ϕ))c̄l1 + h(ϕ)c̄s1. It is further assumed in the present model that the same diffusion chem-
ical potential (∂f cheml (c̄l1)/∂c̄

l
1 = ∂f chems (c̄s1)/∂c̄

s
1) holds within the interfacial region [41]. Built

upon this assumption, the chemical free energy density f chem1 (c̄1,ϕ) is written as [38]

f chem1 (c̄1,ϕ) =
1
2
A
[
c̄1 − h(ϕ)

(
c̄s,eq1 − c̄l,eq1

)
− c̄l,eq1

]2
. (8)
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The dilute solution theory is used to express the contribution to the chemical free energy dens-
ity from the other ions present in the electrolyte [44]

f chem (c̄i) =
RT
Vm

∑
i=2

c̄i ln c̄i +
∑
i=2

c̄iµ
Θ
i , (9)

where µΘ
i is the reference chemical potential of ionic species i, R is the universal gas constant,

and T is the absolute temperature.
The interfacial free energy density is defined as

f grad (∇ϕ) = 1
2
κ|∇ϕ|2, (10)

where κ= 3Γℓ/2 is the isotropic gradient energy coefficient [40].
The electric free energy density of a charged assembly subjected to a net solution potential

is given as [45]

f elec
(−→c ,ψl)= ψlF

∑
i

zi ci, (11)

where F is Faraday’s constant and zi is the charge number of component i.

2.3. Governing equations

2.3.1. Interface evolution and electro-chemical coupling. The evolution of the
metal−electrolyte interface follows the Allen–Cahn equation [46]

∂ϕ

∂t
=−LδF

δϕ
=−L

(
∂f chem

∂ϕ
−κ∇2ϕ

)
in Ω; κn ·∇ϕ = 0 on ∂Ω, (12)

where L> 0 is the phase-fieldmobility parameter. In the present model, the definition of phase-
field mobility L is enhanced to account for the role of local current density in controlling the
motion of the electrode−electrolyte interface. The local current density is written as [47]

ia = i0

[
exp

(
αz1Fη
RT

)
− exp

(
− (1−α)z1Fη

RT

)]
η = Eapp −Eeq −ψl, (13)

where i0 is the exchange current density, α is the anodic charge transfer coefficient (α= 0.26
in this work [26]), η is the overpotential, Eapp is the applied electric potential, and Eeq is the
equilibrium corrosion potential. Using the previous equation and the direct proportionality
between the phase-field mobility and the current density [16, 48], an enhanced definition of
interfacial mobility can be obtained

L= L0

[
exp

(
αz1Fη
RT

)
− exp

(
− (1−α)z1Fη

RT

)]
, (14)

where L0 is the interfacial mobility that corresponds to the exchange current density i0. The
mobility parameter L0 is calibrated against experimental measurements in section 3. The
motion of the interface is nonlinearly proportional to the overpotential following equation (13).
It is demonstrated in appendix A that this enhanced definition of interfacial mobility captures
a nonlinear trend in current density and interface velocity with respect to overpotential. The
present model with this definition of interfacial mobility resembles nonlinear phase-field mod-
els formulated on reaction rate theory [49–51].
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2.3.2. Mass transport. The mass transport of ionic species considered is written as [38]
∂c1
∂t

=−∇ · J1 +R1; J1 =−D1

(
∇c1 − h ′ (ϕ)

(
cs,eq1 − cl,eq1

)
∇ϕ +

z1F
RT

c1∇ψl
)

∂ci
∂t

=−∇ · Ji +Ri; Ji =−Di

(
∇ci +

ziF
RT

ci∇ψl
)

i ̸= 1

 ,

(15)

where Ji denotes the electrochemical flux and Ri are the volumetric reaction rates associated
with the reactions given in equations (2) and (3). On the boundary ∂Ω: n · Ji = 0. The dilute
solution theory is used to derive the electromigration flux in the equation for the metal ion
(the last term in J1) [17, 19, 26]. Di stands for the effective diffusion coefficient given as:
Di = Ds

ih(ϕ)+ (1− h(ϕ))Dl
i, where D

l
i and D

s
i are the diffusion coefficients of ions in the

electrolyte and metal phases (Ds
i ≪ Dl

l). The volumetric chemical reaction rates Ri are [38]

R1 = k1b (c2c3 −K1c1) R2 =−R1 R3 = R2 +R4 R4 = k2b (K2 − c3c4) , (16)

where K1 = k1f/k1b = c2c3/c1 and K2 = k2f/k2b = c3c4 are the equilibrium constants for the
chemical reaction in equations (2) and (3) [52]. k1b and k2b are the penalty coefficients that
enforce the equilibrium in the electrolyte. R1, R2, R3, and R4 are the volumetric reaction rates
ascribed to Mz1+, M(OH)(z1−1)+, H+, and OH− ions. R5 = R6 = 0 as Na+ and Cl− ions are
not considered in equations (1)–(3).

2.3.3. Solution potential. The interface between the electrode and the electrolyte spontan-
eously acquires a charge that forms an EDL, figure 1. These surface charges prevent the motion
of ions within the EDL. They play a critical role in the distribution and motion of ions beyond
this layer [34]. The solution potential distribution outside the EDL can be obtained from the
following equation [45]

∇·λ∇ψl = 0 in Ω

λn ·∇ψl = 0 on ∂Ω ψl = ψdl
l on ∂Ωm and ψl = ψref

l on ∂Ωl, (17)

where ψref
l is the solution potential on the reference electrode boundary ∂Ωl and ψdl

l is the
potential at the interface between the EDL and the diffuse layer, figure 1. In equation (17), λ=
λsh(ϕ)+ (1− h(ϕ))λl is the effective conductivity expressed as a function of conductivities in
the liquid λl and solid phases λs (λs ≫ λl). The electric conductivity in the electrolyte is given
as a function of ionic species concentrations: λl =

∑
iDiF 2z2i ci/(RTVm) [53]. A first-order

resistor-capacitor ECM, given in figure 1, is used to determine the evolution of the potential
at the EDL−electrolyte interface ψdl

l

ψdll = ψ0

(
1

1+χ
+

χ

1+χ
exp

(
− tln2
ξ tc

))
, (18)

where ψ0 is the initial surface polarization at time zero (t= 0), χ is the proportionality con-
stant between the EDL resistanceRdl and the solution resistanceRl (figure 1), ξ is the geometric
factor that accounts for the change in the electrode−electrolyte interfacial area during the dis-
solution process, and tc is the half-time of capacitor charging associated with the formation of
the capacitance of the EDL [54]. Themagnitude ofψdl

l obtained using equation (18) is enforced
on the metal boundary ∂Ωm, figure 1. The high conductivity of the metal λs ensures that there is
no electric potential drop within the metal phase. This ensures that the electric potential at the

8



Modelling Simul. Mater. Sci. Eng. 32 (2024) 075012 M Makuch et al

metal−electrolyte interface is the same as the value described by equation (18). In that way, the
effect of the EDL on the evolution of the solution potential is accounted for without explicitly
introducing it in the computational domain. The ECM parameters χ and tc in equation (18) can
be calibrated against experimental measurements of current density or extracted from exper-
imental studies, as illustrated in section 3.1. The effect of χ and tc on pit kinetics, current
density, and environmental response in terms of the distribution of ionic species and solution
potential is shown in the sensitivity analyses in sections 3.2 and 3.3. Appendix B provides the
details regarding the derivation of equation (18) based on the first-order resistor-capacitor ECM
used in the present work. A similar equation for ψdl

l utilizing another frequently employed cir-
cuit model in experimental practice is also provided in appendix B

The resulting set of governing equations includes equations (12), (15) and (17) along with
the accompanying boundary conditions. The details of the numerical implementation of the
governing equations, finite element mesh, solver tolerance and solution algorithm, and mesh
sensitivity analysis are given in [38]. The code developed is available at https://mechmat.web.
ox.ac.uk/codes.

3. Results

3.1. Model calibration and validation

The classic benchmark pencil electrode test is used to validate the computational framework
developed, figure 2. The experiment consisted of a 304 stainless steel (SS) wire with a 50
µm diameter immersed in 1 M NaCl solution [39]. An epoxy resin was used to coat the wire
circumferentially. The coating prevented dissolution in the radial direction, leaving only the
cross-section surface exposed to the corrosive environment. The potential difference between
the working and the reference SCE was 600 mV. Experimental measurements of pit depth and
current density were recorded during the test. The experimental data is used to calibrate the
interface mobility parameter L0 and the ECM parameters χ and tc.

An axisymmetric domain depicted in figure 2 is considered in the phase-field simulation.
The diameter of the metal wire is the same as in the experiment, d = 50 µm. The size of the
liquid phase is selected to be much larger than the metal to mimic the experimental setup [39].
The large computational domain prevents the electrolyte from being saturated with metal ions.
The resulting set of the governing equations is solved with accompanying initial and bound-
ary conditions. A smooth phase-field profile is prescribed as the initial electrode−electrolyte
interface to initiate the solid (ϕ= 1) and liquid (ϕ= 0) phases. The initial concentration of
metal ions Mz1+ in the solid phase is defined using the molar volume of the metal Vm. The ini-
tial concentrations of metal ions Mz1+ and metal hydroxide ions M(OH)(z1−1)+ in the liquid
phase are equal to zero. The other ionic species considered are only present in the electrolyte.
A neutral pH of 7 is employed to determine the initial concentrations of H+ and OH− ions in
the electrolyte. The solution salinity used in the experiment, figure 2, returns the initial concen-
tration of Na+ and Cl− ions in the electrolyte domain. The initial electric potential distribution
is set to 0 V (vs. SCE). No flux boundary condition for all kinematic variables is applied to all
domain boundaries except on the top and bottom boundaries. A reference solution potential of
0 V (vs. SCE) is prescribed on the far top boundary in the electrolyte. The electric potential at
the interface between the EDL and the electrolyte ψdl

l (see equation (18)) is enforced on the
bottommetal surface, figure 2. The narrow electrode size and epoxy coating enforce no change
in the electrode−electrolyte interfacial area, and thus, the geometric factor in equation (18) is
set to ξ = 1.

9
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Figure 2. Illustration of the experimental setup used in [39] (left) and the corresponding
computational domain (right). Adapted from [38]. CC BY 4.0.

The parameters used in all simulations in this study are listed in table 1. The penalty con-
stants k1b and k2b are selected to be large enough to enforce the equilibrium conditions in
equation (16) but not so large as to hinder numerical convergence. The parametric sensitivity
analysis for different values of the penalty constants is conducted in appendix C. The equi-
librium corrosion potential Eeq, the charge number z1, and the concentration cs,eq1 are defined
using the molar fraction of alloying elements. The charge numbers of the other ions are given
in equations (2) and (3). The equilibrium concentration in the liquid phase cl,eq1 is obtained
using the solubility of salts formed on the exposed metal surface in this metal−environment
system [55]. The formation of salts is not considered in the present model. The chemical free
energy density curvature parameter A is assumed from similar phase-field studies [16, 23, 25].

Comparison between the model predictions and experimental results [39] in terms of pit
depth and current density is given in figure 3. The model predictions are in good agreement
with the experimental data. An analytical solution of pit depth evolution can be derived con-
sidering an equivalent 1D problem [59]. The analytical solution assumes that the transport of
ions far from the interface is the rate-limiting process (diffusion−controlled corrosion) and
that diffusion is the only contribution to ionic migration. The analytical solution returns a lin-
ear relation between pit depth and the square root of the immersion time, figure 3(a). However,
a departure from this linear trend can be observed in the experimental data and model predic-
tions at early immersion times, figure 3(a). This deviation from the analytical solution indicates
that the initial pit kinetics is in an activation-controlled regime. The linear trend in pit kinetics
and peak in current density (figure 3) at early immersion times is associated with the char-
ging of the EDL. The highest magnitude of solution potential is achieved for immersion times
comparable to tc, equation (18). At these times, the overpotential in equation (13) is signific-
antly reduced due to high solution potential. Reduced overpotential leads to a lower kinetic
coefficient L (equation (14)), returning slower pit propagation. Once immersion time exceeds
tc, the process transitions to diffusion−controlled. This change in the rate-limiting process
from activation-controlled to diffusion-controlled is ascribed to the electric potential drop at
the EDL, which builds up enough to release metal ions. The experimental measurements and
phase-field predictions follow the analytical solution in the diffusion-controlled stage. The
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Table 1. Parameters used in all simulations in this study. Adapted from [38]. CC BY 4.0.

Quantity Value Unit

Equilibrium concentration in the solid
phase cs,eq1 = 1/Vm

144.3 mol l−1 [56]

Equilibrium concentration in the liquid
phase cl,eq1

5.1 mol l−1 [55]

Diffusion coefficient of Mz1+ in the
liquid phase Dl

1

0.719× 10−9 ms−2 [57]

Diffusion coefficient of M(OH)(z1−1)+ in
the liquid phase Dl

2

0.719× 10−9 ms−2 [57]

Diffusion coefficient of H+ in the liquid
phase Dl

3

9.311× 10−9 ms−2 [57]

Diffusion coefficient of OH− in the
liquid phase Dl

4

5.273× 10−9 ms−2 [57]

Diffusion coefficient of Na+ in the liquid
phase Dl

5

1.334× 10−9 ms−2 [57]

Diffusion coefficient of Cl− in the liquid
phase Dl

6

2.032× 10−9 ms−2 [57]

Interfacial energy Γ 2.10 Jm−2 [58]
Interface thickness ℓ 5 µm
Chemical free energy density curvature
parameter A

1.02× 108 Jm−3 [23, 25]

Primary hydrolysis equilibrium constant
K1

3.1622× 10−7 molm−3 [52]

Water dissociation equilibrium constant
K2

10−8 mol2 m−6 [52]

Equilibrium corrosion potential Eeq −0.729 V (vs. SCE) [56]
Solid phase conductivity λs 106 S m−1 [56]

Figure 3. Comparison between experimental measurements [39], analytical solution
[59], and phase-field predictions of (a) the evolution of pit depth and (b) current density
as a function of immersion time. Adapted from [38]. CC BY 4.0.
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Figure 4. Equivalent circuit model parameters used in experimental studies (Dong et al
[60], Krakowiak et al [61], Kovac and Legat [62], Vogiatzis et al [63]) and the present
model. (a) Resistance proportionality constant χ and (b) half-time of capacitor charging
tc.

phase-field predictions in figure 3 are obtained using L0 = 1.2× 10−15 m3 (J s)−1, χ= 120,
and tc = 10 s.

The obtained ECM parameters χ and tc are compared with experimental data on 304 SS
immersed in a similar aqueous solution [60–63]. The same equivalent circuit diagram (figure 1)
has been employed in these references to determine the properties of the EDL. The exper-
imentally obtained values for χ and tc, together with the values used in the present model,
are given in figure 4. The results in figure 4 indicate that the constants χ and tc used in the
phase-field simulation of the pencil electrode test follow the experimental data. Variations in
experimentally obtained values for χ and tc can be attributed to different environmental con-
ditions. A sensitivity analysis is conducted in the following section to investigate the effect of
ECM parameters on the pit depth and current density response.

3.2. Sensitivity analysis for equivalent circuit model parameters

The sensitivity study is performed for the ECMparametersχ and tc. Three cases are considered
for the resistance ratio (χ= 20, χ= 120 and χ= 1200) and half-time of capacitor charging
(tc = 1 s, tc = 10 s and tc = 100 s). The values χ= 120 and tc = 10 s are adopted in the previ-
ous section for model calibration. This case study is used for comparison. The same material
properties and numerical parameters, given in section 3.1 and table 1, are used in the sensitiv-
ity analysis. Both activation and diffusion-controlled rate-limiting processes are considered in
the sensitivity study. Applied potentials of −479mV and 600 mV (vs. SCE) are employed to
trigger the activation and diffusion-controlled processes. The former corresponds to the nat-
ural dissolution of metals with an overpotential of 250 mV [5]. The latter is used above for
model validation (section 3.1).

Interface reactions and short-range interactions dictate the corrosion rate in the case of the
small applied potential (−479mV (vs. SCE)). The time-scale of corrosion damage in such an
activation-controlled process is significantly larger than the half-time of capacitor charging
(i.e. t≫ tc). Under this condition, the parameter tc has a negligible effect on pit depth and
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Figure 5. Effect of the resistance proportionality constant χ on (a) the evolution of pit
depth and (b) current density as a function of immersion time. The ECM parameter
tc = 10 s is kept constant.

Figure 6. Effect of the half-time of capacitor charging tc on (a) the evolution of pit depth
and (b) current density as a function of immersion time. The ECM parameter χ= 120
is kept constant.

current density as the second term in equation (18) tends to zero for t≫ tc. The process only
depends on the resistance ratio χ. The pit kinetics and current density response are identical
for all the values of tc considered. Moreover, the values of χ considered have a minor effect
on the response of the system. Hence, these results for an activation-controlled process are not
shown here for brevity.

The model predictions in terms of pit depth and current density for diffusion−controlled
corrosion and different values ofχ and tc are given in figures 5 and 6. The diffusion−controlled
process is achieved by utilizing the same applied potential as in the pencil electrode test in the
previous section (600 mV (vs. SCE)). Figure 5 shows that decreasing χ increases pit depth and

13



Modelling Simul. Mater. Sci. Eng. 32 (2024) 075012 M Makuch et al

Figure 7. Distribution of (a) metal ions Mz1+, (b) pH, (c) chloride ions Cl−, and (d)
solution potential (vs. SCE). The resistance ratio is χ = 20 and the charging half-time
is tc = 10 s. The grey area indicates the remaining undissolved electrode. The legend
bars apply to the whole computational domain (figure 2).

current density. This result follows from the fact that reducing χ leads to an increase in solu-
tion potential at the metal−electrolyte interface (equation (18)), resulting in faster transport of
metal ions far from the interface due to the increase in electromigration. This returns a faster
dissolution rate and higher current density. The sensitivity of the parameter tc on the pit depth
and current density is given in figure 6. The obtained results show that the parameter tc determ-
ines the time at which the pit propagates and the time at which the peak of current density
occurs. For the shortest tc considered (tc = 1 s), the growth of the pit is triggered immediately
and the peak of current density occurs at very short immersion times. For the longest tc con-
sidered (tc = 100 s), the propagation of the pit and the peak of current density are postponed.
The observed behavior is related to the solution potential at the metal−electrolyte interface
and the strength of electromigration. The magnitude of solution potential at the interface is
governed by equation (18). Higher solution potentials are returned for longer values of tc and
cancel surface polarization in equation (13), decreasing overpotential. Such a reduced overpo-
tential yields lower interface mobility (equation (14)), which prolongs pit growth initiation.

3.3. Distribution of ionic species and solution potential

The sensitivity of the ECM parameters χ and tc on the environmental response in terms of
the distribution of ionic species and solution potential is presented in this section. The same
material constants, numerical parameters, and applied potential (600 mV (vs. SCE)) used in
section 3.1 are employed here. Figures 7–9 display distributions of metal ions Mz1+, pH,
Cl−, and electric potential at the final computational time. Figure 7 presents the case with
the strongest electromigration using χ = 20 and tc = 10 s. The obtained results for the weak-
est electromigration using χ = 1200 and tc = 10 s are shown in figure 9. The distribution of
ionic species and solution potential for the reference case used in section 3.1 for model calib-
ration (χ = 120 and tc = 10 s) is presented in figure 8. The difference in dissolved electrode
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Figure 8. Distribution of (a) metal ions Mz1+, (b) pH, (c) chloride ions Cl−, and (d)
solution potential (vs. SCE). The resistance ratio is χ = 120 and the charging half-
time is tc = 10 s. The grey area indicates the remaining undissolved electrode. The
legend bars apply to the whole computational domain (figure 2). Adapted from [38].
CC BY 4.0.

between figures 7–9 indicates different dissolution rates. The concentration of metal ions at
the metal−electrolyte interface reaches the equilibrium concentration in the liquid phase cl,eq1
for all three cases considered. Once the equilibrium concentration is reached, the difference in
dissolution only arises from ionic migration far from the interface. The electric potential dis-
tribution in figures 7(d), 8(d) and 9(d) indicates its contribution to ionic migration. The larger
gradient of electric potential in figure 7(d) produces a much more substantial contribution to
electromigration of ions than those of figures 8(d) and 9(d). Notice that the maximum solution
potential at the interface for these three cases considered is 60 mV, 11 mV, and 1 mV (vs.
SCE). The high solution potential of 60 mV (vs. SCE) results in the fast removal of metal ions
from near the interface (figure 7(a)), leading to a fast dissolution rate.

The solution potential through electromigration also influences the transport of other ions
present in the electrolyte. Chloride ions Cl− do not participate in the reactions listed in
equations (1)–(3). The competition between diffusion and electromigration (equation (15))
governs the transport of Cl− ions in the electrolyte. Although the simulations start from the
same uniform initial concentration of Cl− ions, different values of Cl− ions are returned at the
metal−electrolyte interface. A comparison between the maximum value of solution potential
and chloride ions in figures 7–9 demonstrates the effect of solution potential in governing the
transport of Cl− ions. The same observation can be noticed for the other ions. The local con-
centration of metal ionsMz1+, and their proportion to metal hydroxideM(OH)(z1−1)+, controls
the maximum concentration of hydrogen ions H+. For large enough backward reaction con-
stants, k1b and k2b, the maximum concentration of H+ ions remains unchanged regardless of
electromigration. Hydrogen, as positively charged, migrates to the bulk electrolyte along the
solution potential gradient, increasing its acidity.

The distribution of ionic species along the symmetry axis (figure 2) for the reference case
study (χ= 120 and tc = 10 s) is shown in figure 10. Both pH and metal ion range agree with
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Figure 9. Distribution of (a) metal ions Mz1+, (b) pH, (c) chloride ions Cl−, and (d)
solution potential (vs. SCE). The resistance ratio is χ= 1200 and the charging half-time
is tc = 10 s. The grey area indicates the remaining undissolved electrode. The legend
bars apply to the whole computational domain (figure 2).

Figure 10. Distribution of concentrations along the symmetry axis (figure 2) for (a)
H+, OH−, M(OH)(z1−1)+ and (b) Mz1+, Na+, and Cl− ions at the final computational
time. c̄i in (a) denotes the concentration of ions normalized with 1 mol l−1. The ECM
parameters are set to χ = 120 and tc = 10 s.

figure 8. Chloride ion distribution increases up to 1.5 M near the metal−electrolyte interface,
decaying to an initial condition value of 1 M in the bulk electrolyte. Figure 10 also includes
ionic species absent in figure 8. As can be observed in figure 10(a), hydroxide anions decrease
with an increase in hydrogen cations. The mutual influence of dissociated water components
comes from the water stability equation (3). It enforces that the sum of pH and pOH is constant
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Figure 11. The ratio between chloride ions and pH inside the occluded zone for (a) χ=
20, tc = 10 s, (b) χ = 120, tc = 100 s, (c) χ = 120, tc = 10 s, and (d) χ = 1200, tc =
10 s. The most severe attack corresponds to the highest ratio between Cl− and pH.

and equal to 14. This verifies that the selected values of the penalty constants k1b = 2000
m3 (mol s)−1 and k2b = 10 000 m3 (mol s)−1 (appendix C) are large enough to satisfy the
equilibrium conditions in equation (16) in the entire electrolyte. The M(OH)(z1−1)+ ions have
a high concentration in the occluded zone, followed by a continuous decrease in the distance in
the bulk electrolyte. The distribution ofMz1+, Na+, andCl− ions are shown in figure 10(b). The
distribution of Na+ and Cl− ions is only affected by electromigration as they do not contribute
to any reaction considered. There is a decrease in Na+ ion concentration in the occluded zone,
which then increases to an initial condition concentration of 1 M in the bulk electrolyte. The
opposite behaviour is noticed for Cl− ions as they are negatively charged. As can be seen in
figures 7, 8–10, the localized processes occur inside the occluded zone while the composition
of the bulk electrolyte does not evolve significantly from the initial conditions. All the ionic
concentrations remain close to the initial conditions in the bulk electrolyte.

The obtained results for different ECM parameters χ and tc are used to determine the ratio
between Cl− ions and pH inside the occluded zone. This ratio is commonly associated with
damage in stainless steel [3, 39, 64], as it affects the stability of oxide films and precipitated
phases [65]. Four different cases are presented in figure 11. Themost severe attack corresponds
to the highest ratio between Cl− and pH. It is obtained for the strongest electromigration (χ=
20 and tc = 10 s), figure 11(a). The second most damaging case is for χ= 120 and the longest
charging kinetics of the EDL tc = 100 s, figure 11(b). The ratio between Cl− and pH for the
ECM parameters determined in section 3.1 for model calibration (χ = 120 and tc = 10 s) is
shown in figure 11(c). The case with the weakest electromigration, and thus, the least damaging
case, is returned for χ= 1200 and tc = 10 s, figure 11(d). As can be observed in figure 11, the
ratio between chloride concentration and pH significantly depends on the ECM parameters χ
and tc. It mostly varies in the occluded zone and has a constant value in the bulk electrolyte for
all the cases considered.Moreover, figure 11 shows a correlation between increased dissolution
and increased concentration of harmful ionic species near the metal−electrolyte interface.
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4. Discussion

Tracking the metal−electrolyte interface and measuring pit kinetics in situ is challenging due
to the small length scale and the formation of corrosion products. As such, the current density
is typically reported in experimental studies to quantify corrosion damage. On the other hand,
numerical models are mostly validated against pit kinetics. The present model reproduces
experimental data on both pit depth and current density, figure 3. The model developed enables
more accurate information on corrosion damage and captures the current density response,
providing a more robust framework for quantifying corrosion damage. This feature is enabled
by solving a Laplace-type equation (17) for the electric potential along with the boundary con-
dition (equation (18)) prescribed on the metal surface ∂Ωm, figure 1. The boundary condition
is a function of ECM parameters χ and tc, which define the properties of the EDL, such as its
resistance and capacitance. The resulting solution potential distribution depends on the para-
meters χ and tc, which can be estimated from experimental studies, as illustrated in figure 4.

Alternative approaches for solving for solution potential are based on a Poisson-type
equation

−∇ · (λ∇ψl) = ζ in Ω; λn ·∇ψl = 0 on ∂Ω, (19)

where ζ is the source term introduced to represent the net change in charge density as a result
of the electrochemical reaction. The source term ζ is commonly expressed considering the
production of electrons due to the dissolution of the metal electrode [24, 26, 29, 30]

ζ = Fcs,eq1 z1
∂ϕ

∂t
, (20)

or assuming that the conservation of charge is at a steady state [19, 32, 33]

ζ = F
∑

zi
∂ci
∂t
. (21)

Similar alternative expressions for the source term ζ can be found in [17, 31]. The solution
potential distribution determined using equation (19) depends on the rate of interface evolu-
tion or the rate of ionic species evolution. The obtained solution potential is fed back in the
electrochemical flux Ji in themass transport equation (15). This two-way coupling between the
solution potential and phase-field variable or ionic species can lead to excessive electromigra-
tion. Such an increase in electromigration enhances the transport of ions away from the inter-
face, further increasing dissolution. Moreover, it is challenging with this approach to attain the
expected linear trend in pit kinetics and immersion time (figure 3(a)), as demonstrated below.

A comparison between the present work and representative studies that utilize
equation (19), along with a different source term ζ, to solve for solution potential is shown
in figure 12. The same pencil electrode test and experimental measurements of pit depth used
in section 3.1 for calibration of the present model are used in [19, 24, 31]. The comparison is
performed against pit depth as the original [19, 24, 31] do not report transient current density
response. As can be observed in figure 12, these studies underestimate pit depth [19], cover a
limited range of experimental data [24] or overestimate the pit depth kinetics [31]. Moreover,
they are unable to reproduce the linear trend in pit kinetics and the square root of immersion
time. The present work satisfactorily covers the whole range of experimental data and is in
agreement with experimental measurements. The solution potential distribution in the present
model does not depend on the rate of interface evolution or the rate of ionic species evolution.
The boundary condition in equation (18), which is a function of ECM parameters χ and tc,
controls the maximum solution potential drop across the electrolyte. The ionic species are no
longer subjected to excessive electromigration. The resulting electromigration flux enhances
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Figure 12. Comparison between the present work andmodels from the literature (Ansari
et al [19], Tantratian et al [24], Chadwick et al [31]) for the evolution of pit depth as a
function of immersion time. Experimental measurements are taken from [39]. Adapted
from [38]. CC BY 4.0.

the ionic migration enough for the pit depth propagation to meet the experimental data. The
comparison in figure 12 highlights the necessity of introducing charging dynamics of the EDL
to describe damage propagation accurately in accelerated corrosion tests.

Additional analysis is performed to show the effect of solution potential distribution on the
pit depth and current density response. Three cases are considered in this study. The first case
includes the present model in which the solution potential is obtained using equation (17) and
boundary condition (18). The second case considers the same model but neglects the exponen-
tial term in equation (18). This case follows from the sensitivity study in section 3.2, which
reveals that this term can be ignored for a long immersion time t≫ tc. The solution poten-
tial distribution still follows the same governing equation (17) and is subjected to a constant
boundary condition

ψdll = ψ0 1
1+χ

on ∂Ωm. (22)

The solution potential distribution in the third case considered is obtained utilizing
equation (19) and the source term ζ given in equation (20). This case study introduces a
dependence of solution potential on the rate of interface evolution. The same material proper-
ties and numerical constants given in table 1 are employed in this study. A comparison between
these three models considered in terms of pit depth and current density is given in figure 13.
As shown in figure 13, the model that uses the source term in the governing equation for the
solution potential overestimates the experimental data. The discrepancy arises from excess-
ive electromigration contribution. Such an increase in electromigration flux is responsible for
the faster motion of ions far from the interface, returning an accelerated dissolution rate and
higher current density. The pit kinetics and current density response are similar between the
present models that utilise equations (18) and (22) for the boundary condition in the gov-
erning equation for the solution potential. Models that neglect charging dynamics of the EDL
(equation (22)) slightly underpredict pit depth and current density response at early immersion
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Figure 13. Comparison between experimental measurements [39] and predictions of
different models of (a) the evolution of pit depth and (b) current density as a function of
immersion time. Adapted from [38]. CC BY 4.0.

times. Afterwards, pit depth and current density align with the experimental data, illustrating
that the capacitive process has a limited influence at longer immersion times.

The main disadvantage of the present model is the number of additional parameters that
need to be calibrated. When dissolution is a diffusion-controlled process, the kinetic coeffi-
cient L0 is a purely numerical parameter that needs to be calibrated against experimental data.
However, it has been shown that for activation-controlled dissolution, the kinetic coefficient
L0 is directly proportional to anodic current density [48]. The ECM parameters χ and tc can be
calibrated against current density data or extracted from experimental studies, as evidenced in
figure 4. A single pair of χ and tc describes a specific system. On the other hand, incorporat-
ing the ECM parameters into the present framework decouples the solution potential evolution
from the rate of interface evolution or the rate of ionic species evolution. This decoupling elim-
inates excessive electromigration, enabling more accurate information on corrosion damage
by capturing both pit kinetics and current density. Matching current density response through-
out the charging of the EDL is a promising step towards correlating natural and accelerated
corrosion tests. The main approximations used in the present investigation are related to the
chemical free energy density in section 2.2. The chemical free energy density associated with
the metal ion concentration in both phases is approximated with parabolic functions with the
same density curvature parameter A, equation (7). As such, it assumes that the metal and the
electrolyte are solutions with considerable composition ranges. Moreover, the dilute solution
theory is used to express the contribution to the chemical free energy density from the other
ions present in the electrolyte, equation (9). A more detailed description of the chemical free
energy density of the system is required to verify those assumptions. This should be addressed
in future work. It is also assumed in the present study that the ECM parameters χ and tc are
constants and independent of the concentration of ionic species near the metal−electrolyte
interface. While this approximation is justified for short accelerated corrosion tests, as the one
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considered in section 3.1, it may not be valid for longer immersion times, as shown in figure 4.
As demonstrated in sections 3.2 and 3.3, the variation in the ECM parameters influences pit
depth, current density, and the distribution of ionic species and solution potential in the elec-
trolyte. Hence, they should be chosen judiciously.

5. Conclusions

A computational framework based on the phase-field method is developed to assess the corro-
sion of metallic materials. The model incorporates the role of electrochemistry and charging
kinetics of the EDL in governing the corrosion process. The effects of the EDL on the transport
of ionic species in the electrolyte are established by introducing a boundary condition on the
solution potential equation. The properties of the EDL, such as its resistance and capacitance,
are included in the model through two ECM parameters. The study shows that the ECM para-
meters determine the magnitude of solution potential at the electrode−electrolyte interface,
which in turn, defines the magnitude of electromigration. As a result, different pit kinetics,
current density, and environmental responses in terms of the distribution of ionic species and
solution potential are obtained.

Future work should extend beyond potentiostatic tests and consider the dependence of the
Pourbaix diagram on surface polarization. Such a model would allow capturing current density
in electrochemical impedance spectroscopy and polarization studies. Future work should also
consider the role of precipitation of stable phases such as salts on dissolution kinetics. The
formation of an oxide layer can also be incorporated into the present framework following
equivalent circuit models.

Data availability statement

The code developed is available at https://mechmat.web.ox.ac.uk/codes. All data that support
the findings of this study are included within the article (and any supplementary files).
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Appendix A. Dependence of electrode kinetics on overpotential

The enhanced definition of interfacial mobility L in equation (14) captures a nonlinear depend-
ence of electrode kinetics on overpotential. This dependence on overpotential is demonstrated
in figure A.1 considering interface velocity and current density. Both quantities are determined
using the present model and Butler−Volmer kinetics. As can be observed in figure A.1, the
present model returns the trend predicted by Butler−Volmer equation (13). The present frame-
work with this definition of interfacial mobility L resembles nonlinear phase-field models of
corrosion [22, 24, 27, 31] formulated on reaction rate theory [49–51].
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Figure A.1. Dependence of (a) interface velocity and (b) current density on
overpotential.

Figure B.1. Two equivalent circuit models most commonly used in experimental prac-
tice. Circuit model with (a) one and (b) two capacitive processes.

Appendix B. Equivalent circuit models

Two ECMs shown in figure B.1 are frequently used in experimental practice to determ-
ine the properties of EDL. The ECM in figure B.1(a) is employed in this investigation.
The circuit model in figure B.1(b) allows for capturing more capacitive processes at the
metal−electrolyte interface. Simulation results in section 3.1 demonstrate that the simplest
circuit model (figure B.1(a)) is sufficient to capture experimental data on pit kinetics and cur-
rent density, figure 3. The evolution of the solution potential at the EDL−electrolyte interface
ψdl
l is given in equation (18) considering the circuit model in figure B.1(a). Details regarding

its derivation and an equivalent equation for the circuit model in figure B.1(b) are given below.
Following the first Kirchhoff Law, the conservation of currents at the contact between the

bulk electrolyte and the EDL (figure B.1(a)) can be written as [54]

I1 = I2 + I3 I1 =
ψ0 −ψdl

l

Rl
I2 = Cdl

dψdl
l

dt
I3 =

ψdl
l

Rdl
, (B.1)

where ψ0 accounts for the initial surface polarization at time zero (t= 0), ψdl
l the evolution of

the potential at the interface between the EDL and the electrolyte, Rl the solution resistance,
Rdl the resistance of the EDL, and Cdl the capacitance of the EDL. The resistor Rdl and the
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capacitor Cdl are connected in parallel and they experience the same electric potential drop.
The conservation of currents is re-written as

ψ0 −ψdl
l

Rl
= Cdl

dψdl
l

dt
+
ψdl
l

Rdl
. (B.2)

Solving the previous expression for ψdll leads to

ψdl
l = Cexp

(
− Rl+Rdl

CdlRlRdl
t

)
, (B.3)

where C is the constant that determines the initial conditions for the discharge of the capacitor.
Standard manipulation renders the following expression

ψdl
l = ψ0

(
Rl

Rl+Rdl
+

Rdl

Rl+Rdl
exp

(
− Rl+Rdl

CdlRlRdl
t

))
. (B.4)

Upon assuming that the resistance of the EDL is proportional to the solution resistance (Rdl =
χRl) and that the capacitance of the EDL is formed at half-time of capacitor charging tc (Cdl =
ξ tc/(Rdlln2)), the evolution of the potential at the interface is written as

ψdl
l = ψ0

(
1

1+χ
+

χ

1+χ
exp

(
− t ln2
ξ tc

))
, (B.5)

where ξ stands for the geometric factor to account for the change in the electrode−electrolyte
interfacial area during the dissolution process. The previous expression resembles
equation (18).

Following the same steps as above, the evolution of the solution potential using the ECM
in figure B.1(b) can be written as

ψdl
l = ψ0

 Rl
Rl+R2 +R3

+
R2 +R3

Rl+R2 +R3
exp

−
R2 (R2 +R3) t+

C3RlR2R
2
3

R2+R3
exp

(
− R2+R3

C3R2R3
t
)

C2RlR2 (R2 +R3)

 ,

(B.6)

whereR2 andC2 are the resistance and capacitance of the outer capacitor,R3 andC3 are the res-
istance and capacitance of the inner capacitor. Assuming that the resistances are proportional
(χ = R2/Rl, φ = R3/R2) and that the capacitance of each capacitor is formed at half-time of
capacitor charging (C2 = tc2/(R2ln2), C3 = tc3/(R3ln2)) renders the following expression for
the evolution of the potential at the interface

ψdl
l = ψ0

 1
1+χ (1+φ)

+
χ (1+φ)

1+χ (1+φ)
exp

−
(1+φ) t ln2+

φ tc3
χ exp

(
− t ln2

tc3

)
(1+φ) tc2 +

φ tc3
χ ln2 exp

(
− tc2 ln2

tc3

)
 .

(B.7)

Appendix C. Parametric sensitivity analysis for penalty constants k1b and k2b

The parametric sensitivity study is performed for the penalty constants k1b and k2b. A conver-
gence analysis is conducted in which the values of both constants are varied until the equi-
librium conditions in equation (16) are not satisfied. As can be observed in figure C.1, the
equilibrium conditions in equation (16) are met for k1b = 2000 m3 (mol s)−1 and k2b = 10000
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Figure C.1. Convergence analysis for the (a) equilibrium constant K1 and (b) equilib-
rium constant K2 as a function of penalty constants k1b and k2b.

m3 (mol s)−1. A further increase in the values of the penalty constants leads to higher compu-
tational costs and convergence issues.
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