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A B S T R A C T

Randomness in the void distribution within a ductile metal complicates quantitative modeling of damage
following the void growth to coalescence failure process. Though the sequence of micro-mechanisms leading
to ductile failure is known from unit cell models, often based on assumptions of a regular distribution of voids,
the effect of randomness remains a challenge. In the present work, mesoscale unit cell models, each containing
an ensemble of four voids of equal size that are randomly distributed, are used to find statistical effects on
the yield surface of the homogenized material. A yield locus is found based on a mean yield surface and a
standard deviation of yield points obtained from 15 realizations of the four-void unit cells. It is found that
the classical GTN model very closely agrees with the mean of the yield points extracted from the unit cell
calculations with random void distributions, while the standard deviation S varies with the imposed stress
state. It is shown that the standard deviation is nearly zero for stress triaxialities 𝑇 ≤ 1∕3, while it rapidly
increases for triaxialities above 𝑇 ≈ 1, reaching maximum values of about S∕𝜎0 ≈ 0.1 at 𝑇 ≈ 4. At even higher
triaxialities it decreases slightly. The results indicate that the dependence of the standard deviation on the
stress state follows from variations in the deformation mechanism since a well-correlated variation is found
for the volume fraction of the unit cell that deforms plastically at yield. Thus, the random void distribution
activates different complex localization mechanisms at high stress triaxialities that differ from the ligament
thinning mechanism forming the basis for the classical GTN model. A method for introducing the effect of
randomness into the GTN continuum model is presented, and an excellent comparison to the unit cell yield
locus is achieved.
1. Introduction

Ductile failure processes lead to a loss of load-carrying capacity
and occur through either localization of plastic flow (Tekoğlu et al.,
2015; Guo and Wong, 2018; Liu et al., 2019) or by macroscopic yield-
ing (Hure, 2021). The complex sequence of micro-mechanisms con-
trolling failure has been studied for decades (Huang and Hutchinson,
1989; Tvergaard, 1990; Thomson et al., 1998; Benzerga and Leblond,
2010) and it is widely accepted that ductile damage predictions in
component-sized structures require continuum modeling for computa-
tional efficiency. Thus, numerous homogenized yield criteria have been
developed for ductile failure modeling, with the most famous being the
model by Gurson (1977), which explicitly accounts for the porosity,
𝑓 , of the material. However, the Gurson model was early on adjusted
by Tvergaard (1981), Tvergaard and Needleman (1984) to improve the
model accuracy (through the Tvergaard-constants 𝑞1 and 𝑞2) and ac-
count for accelerated void growth at microscopic localization (through
the coalescence model imposed through a critical porosity 𝑓 ∗). This
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widely used combined model is nowadays known as the Gurson–
Tvergaard–Needleman (GTN) model. However, many other extensions
have been proposed over the years (see Benzerga and Leblond, 2010,
and references therein), and while most focuses on obtaining homog-
enized material properties, the present study will quantify the effect
of random void distributions and illustrate how the variation on meso-
scale properties can be included in a modified GTN model. The choice
of the GTN model is grounded on its appropriateness for spherical
pores. However, the framework can be readily applied to other models,
and this is particularly relevant when investigating localization, where
the GTN model is limited relative to other models (Thomason, 1985;
Pardoen and Hutchinson, 2000; Benzerga, 2002; Leblond and Mottet,
2008; Tekoglu et al., 2012), or size effects (Niordson, 2008; Nguyen
et al., 2020).

At a scale comparable to the void spacing, the flow strength is
highly sensitive to void distribution (Needleman and Kushner, 1990).
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Realistic void distributions are far from periodically arranged, and
both Scanning Electron-microscopy and X-ray tomography experiments
of voided materials have demonstrated either random or clustered
configurations (Buffiere et al., 1999; Lecarme et al., 2014; Hannard
et al., 2017) - a property not built into the usual continuum-based
models. Despite this, the void distribution effects have proven impor-
tant to the microscopic localization process (Dubensky and Koss, 1987;
Magnusen et al., 1988) and the macroscopic fracture in ductile plate
tearing (Tekog̃lu and Nielsen, 2019; Andersen et al., 2020; Çelik and
Tekoğlu, 2021). Generally, a lower ductility is obtained for random
distributions due to the triggering of local plastic yielding and loss of
load-carrying capacity. For example, Becker (1987) performed finite
element simulations of a 2D model for an elastic-viscoplastic material
obeying the Gurson–Tvergaard yield criterion with an inhomogeneous
distribution of voids. The results showed that plastic flow concentrates
into bands in areas with large volume fractions of voids. Perrin and
Leblond (1990) analyzed a composite sphere of two porous plastic
materials, each obeying the Gurson criterion with individual porosities.
The macroscopic yield stress was proven to be different from the one
derived from the average homogeneous porosity under hydrostatic
stress, indicating that the porosity distribution will affect the effective
properties of voided materials.

Unit cell calculations with a single void representing a regular
distribution of voids give important fundamental insight into yield
properties and damage on a macroscopic scale. However, these material
properties are also highly influenced by the spatial void distribution.
Many studies have been carried out to investigate details of plastic
flow and damage in materials with realistic void distributions. Fritzen
et al. (2012) studied statistical effects in large ensembles of voids with
volume fractions of up to 30%, leading to a proposed extension of the
Gurson–Tvergaard model in terms of a volume fraction dependence of
the correction parameters introduced by Tvergaard (1981). Khdir et al.
(2015) demonstrated that the same model could be used for differently
shaped voids assuming that the RVE is of sufficient size. Significant
dispersion of failure strains, even for large RVEs, was reported through
a numerical investigation in Cadet et al. (2021, 2022). While small
RVEs with a single void may not provide a sufficiently realistic repre-
sentation of macroscopic properties in terms of plasticity and damage,
very large RVEs may yield results that do not adequately represent
the microscopic variation in material properties on a small scale. On
the other hand, intermediate RVEs with a few voids may be used to
represent the spatial statistical variations on the scale of individual
integration points in a numerical model, thus leading to an appropriate
representation of spatially varying mesoscale properties.

This work aims to understand and quantify the effect of the spatial
void distributions in terms of the macroscopic yield stress and its
dependence on stress triaxiality. To achieve this, three-dimensional
representative volume element calculations with periodic boundary
conditions containing four spherical voids of equal size distributed ran-
domly are carried out. The voids are embedded in an elastic-perfectly
plastic material. Several randomizations are considered for constant
initial void volume fraction and stress triaxiality to bring out the
statistical variation of the yield locus. In this way, the aim is not
to achieve a homogenized response by pursuing a sufficiently large
unit cell but rather to understand how void distribution affects the
dispersion around a mean yield locus. A subsequent statistical analysis
gives input for a proposed yield surface accounting for the dispersion
of the material yield point for different void configurations. A modified
GTN model is proposed including statistical variations, and the model
compares well to the unit cell simulation results. Finally, a procedure
for implementing the new yield surface into a large-scale calculation is
presented.

The paper is organized as follows: Section 2 presents the problem
formulation in terms of a unit cell with random void distributions, the
modeling approach, and the fundamental quantities for the discussion
of results. The results from the unit cell study, alongside a comparison
to the classical GTN model and a new extension, are presented and
2

discussed in Section 3. The work is concluded in Section 4.
Fig. 1. Schematic of the periodic arrangement of the mesoscale unit cell containing a
random distribution of four equal-sized spherical voids with initial radius 𝑟0. The unit
cell is repeated along all coordinate axis and has side lengths 𝑎0 in all directions.

2. Problem formulation and modeling approach

This work considers a limit load-type analysis of a porous metal with
random distributions of discretely modeled microvoids to determine
the statistical variation in the yield surface characteristics. Attention
is on axisymmetric stress states in the full range of positive stress
triaxiality, and the imposed condition is kept constant for each point
evaluated on the yield surface (ensuring proportional loading). The
matrix is modeled as a rate-independent, perfectly-plastic von Mises
material (𝐽2-flow theory), and a small strain finite element formulation
is adopted to mimic the limit load of the material. The matrix material
is characterized by the parameters: 𝜎0∕𝐸 = 0.001 and 𝜈 = 0.3, where
𝜎0 is the yield stress, 𝐸 is Young’s modulus, and 𝜈 is the Poisson ratio.
The unit cell configuration is described in Section 2.1, the modeling
approach is outlined in Section 2.2, while the fundamental quantities
in the statistical analysis and for the discussion of results are outlined
in Sections 2.3 and 2.4.

2.1. Unit cell configuration

Fig. 1 shows the cubic unit cell setup, where 𝑎0 denotes the side
length along the three coordinate axes 𝑥𝑖 (𝑖 = 1, 2, 3). Each unit cell
contains four (𝑁 = 4) spherical voids defined by their center coordi-
nates and initial radius 𝑟0. Here, the non-dimensional total porosity
𝑓0 = 4𝜋

3
𝑁𝑟30
𝑉 (or unit cell void volume fraction) of the unit cell with

volume 𝑉 determines the void radius, and the results are presented
for three different 𝑓0-values in Section 3. The spatial location of the
voids is determined using an ad-hoc algorithm implemented by means
of the Abaqus2Matlab software (see Papazafeiropoulos et al., 2017).
The algorithm generates a given number of 3D spheres inside a 3D
domain, with the radii and the positions of the spheres being uniformly
random. The algorithm, simplified to equally sized voids, involves the
following steps:

(i) A 3D point grid of potential void centers is created within the unit
cell.

(ii) The order of the grid points is randomly permuted.
(iii) The mutual distances between all center points are calculated and

a new center point is defined if the distance is smaller than a
minimum distance 2𝑟0 + 𝐿, with 𝑟0 and 𝐿 being the void radius
and minimum ligament size, respectively.
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Fig. 2. Examples of three unit cell finite element meshes containing different randomizations of voids.
Fig. 3. Procedure for modeling a Face-Centered Configuration (FCC) of the voided
unit cell, showing (a) the FCC unit cell where the voids removed (left) are outside the
shifted unit cell (right), and (b) the corresponding finite element mesh of the FCC unit
cell.

In this way, the algorithm introduces a set of non-overlapping
spherical voids, and a representation of three random configurations
is shown in Fig. 2 in terms of finite element meshes.

For comparison purposes, the present work also considers a regular
Face-Centered Configuration (FCC) void distribution loaded along the
cubic axes. Fig. 3a illustrates how the configuration can be modeled
considering only four voids when translating the unit cell in the positive
𝑥1-, 𝑥2- and 𝑥3-direction. The corresponding finite element mesh for
the FCC unit cell is shown in Fig. 3b. It is worth noticing that the FCC
unit cell response is independent of the translation along the coordinate
axes.

2.2. Numerical modeling approach

The present work adopts a small strain finite element formula-
tion and exploits the commercial software package (Abaqus, 2020).
Thus, the model setup cannot account for the softening owing to void
growth. Instead, the load-carrying capacity of the unit cell represents
the limit load and, thereby, a point on the yield surface when plotted
in stress space. Throughout, axisymmetric stress states with 𝜎 = 𝜎 are
3

2 3
Fig. 4. Modeling procedure for imposing periodic boundary conditions and loading
to the unit cell, showing the faces, edges, and vertices defined by 𝐴,𝐵, 𝐶,𝐷 and
𝐴′ , 𝐵′ , 𝐶,𝐷′. The dummy nodes to control the imposed stress state are denoted 𝑁𝑖,
and the related master nodes are 𝑀𝑖 (𝑖 = 1, 2, 3), which are part of the finite element
mesh. The dummy and master nodes are connected with spring elements, as illustrated.

considered such that the stress state is defined by the stress ratio

𝜌 =
𝜎3
𝜎1

=
𝜎2
𝜎1

(1)

where 𝜎1 is the stress along the main loading axis, and 𝜌 is kept constant
and prescribed for each individual analysis of a point on the yield
surface. Thus, the von Mises equivalent stress 𝜎𝑒, and the overall mean
stress 𝜎𝑚 are

𝜎𝑒 = |𝜎1 − 𝜎2| = 𝜎1(1 − 𝜌) and 𝜎𝑚 =
𝜎1 + 2𝜎2

3
= 𝜎1

1 + 2𝜌
3

, (2)

while the stress triaxiality 𝑇 is related to the stress ratio through

𝑇 = 1
3

(

1 + 2𝜌
1 − 𝜌

)

. (3)

In the finite element calculations, the ratio 𝜌 between the transverse
and axial stress components is kept constant using multiple-point con-
straints (MPCs in Abaqus). This is achieved by introducing an extra
set of degrees of freedom to the finite element mesh in terms of three
dummy nodes 𝑁𝑖 (𝑖 = 1, 2, 3) placed outside the finite element mesh
as depicted in Fig. 4. The dummy nodes are connected with spring
elements (SPRING2 in the Abaqus) to three master nodes 𝑀𝑖 (𝑖 = 1, 2, 3),
which are part of the unit cell mesh. In this way, the displacement of
the dummy nodes is related to the forces 𝐹𝑖 acting on the faces of the
unit cell (along its normal) through

𝐹 = 𝑘 (𝑢𝑁𝑖 − 𝑢𝑀𝑖 ), 𝑖 = 1, 2, 3, (4)
𝑖 𝑖 𝑖 𝑖
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where 𝑘𝑖 are the spring element constants. Moreover, the forces 𝐹𝑖 are
related to the macroscopic stresses through

𝜎1 =
𝐹1
𝐴1
, 𝜎2 =

𝐹2
𝐴2

= 𝜎3 =
𝐹3
𝐴3
, (5)

where 𝐴𝑖 are the surface areas of the unit cell. Thus, combining Eqs. (1),
(4), and (5), and solving for the displacement of the dummy nodes (for
constant 𝜌) gives

𝑢
𝑁𝑗
𝑖 = 𝑢

𝑀𝑗
𝑖 + 𝜌

(

𝑢
𝑁𝑗
1 − 𝑢

𝑀𝑗
1

)

, 𝑖, 𝑗 = 1, 2, 3. (6)

Here, 𝑢𝑁1
1 is the prescribed displacement in the main loading direc-

tion 𝑥1, while the remaining displacements of the dummy nodes are
calculated in the MPC subroutine.

Furthermore, to ensure the periodicity of the unit cell, a set of linear
constraint equations is imposed according to

Faces: Edges: Vertices:

𝑢𝐴𝐵𝐶𝐷𝑖 = 𝑢𝐴
′𝐵′𝐶′𝐷′

𝑖 + 𝑢𝐶𝑖 𝑢𝐴𝐵𝑖 = 𝑢𝐷
′𝐶′

𝑖 + 𝑢𝐶𝑖 + 𝑢𝐵′𝑖 𝑢𝐴
′

𝑖 = 𝑢𝐷
′

𝑖 + 𝑢𝐵′𝑖
𝑢𝐴

′𝐴𝐵𝐵′
𝑖 = 𝑢𝐷

′𝐷𝐶′𝐶
𝑖 + 𝑢𝐵′𝑖 𝑢𝐴𝐷𝑖 = 𝑢𝐵

′𝐶′
𝑖 + 𝑢𝐶𝑖 + 𝑢𝐷′

𝑖 𝑢𝐷𝑖 = 𝑢𝐶𝑖 + 𝑢𝐷′
𝑖

𝑢𝐴
′𝐵𝐷𝐷′

𝑖 = 𝑢𝐵𝐵
′𝐶𝐶′

𝑖 + 𝑢𝐷′
𝑖 𝑢𝐴𝐴

′
𝑖 = 𝑢𝐶𝐶

′
𝑖 + 𝑢𝐵′𝑖 + 𝑢𝐷′

𝑖 𝑢𝐵𝑖 = 𝑢𝐶𝑖 + 𝑢𝐵′𝑖
𝑢𝐴𝑖 = 𝑢𝐶𝑖 + 𝑢𝐵′𝑖 + 𝑢𝐷′

𝑖

(7)

for 𝑖 = 1, 2, 3. Here, 𝑢𝑖 is the displacement in the 𝑖th direction (𝑖 = 1, 2, 3)
of the nodes at the faces, edges, and vertices of the unit cell, as shown
in Fig. 4. The nodes at the corners 𝐵′, 𝐶, and 𝐷′ are the master nodes.

2.3. Statistical variation

The random void distributions naturally introduce a statistical vari-
ation in the model output. The yield point extracted at the limit load
of the unit cell depends on the localization process between voids (or
lack thereof) and, thus, on the intervoid distance and the location of
the voids. Thus, a mean 𝜇 and standard deviation 𝐒 are introduced to
characterize the span of yield points obtained for a specific stress state
and initial porosity. Note that proportional loading is imposed using a
number of constant stress ratios 𝜌, such that all the determined yield
points for a given 𝑓0 and 𝜌 will be located on a straight line through
the origin in the 𝜎𝑒−𝜎𝑚 stress space. Let 𝑠𝑖 =

√

𝜎2𝑒 + 𝜎𝑚2 be the distance
from the origin to the yield point of the 𝑖th unit cell calculation for a
specific value of 𝜌. The mean of 𝑛 unit cell calculations with different
random void distributions is then given by

𝜇 = 1
𝑛

𝑛
∑

𝑖=1
𝑠𝑖, (8)

and the corresponding standard deviation of the mean distance is

𝐒 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑠𝑖 − 𝜇)2 (9)

2.4. Characterization of deformation mechanism

To discuss the mechanism of plastic deformation leading to the loss
of load-carrying capacity of the unit cell, a plastic index 𝐏𝐈 is introduced
as

𝐏𝐈 =
𝑉𝑝
𝑉𝑚
, (10)

where 𝑉𝑚 is the volume of the matrix material, and 𝑉𝑝 is the volume of
the unit cell undergoing plastic yielding. The plastic index provides a
way to distinguish between macroscopic yielding and localization of
plastic flow (or homogeneous versus inhomogeneous yielding in the
terminology of Hure, 2021). At the limit load, the major part of the
unit cell undergoes macroscopic yielding when 𝐏𝐈 → 1, while small
values of 𝐏𝐈 indicate localization in part of the unit cell volume.
4

Fig. 5. Yield points for different combinations of porosity 𝑓0, stress state 𝑇 , and void
distribution (15 different randomizations of each 𝑓0 − 𝑇 -combination), alongside the
calculated mean values (solid lines) and results for the FCC unit cell (dashed line).
The stress state is limited to axisymmetry and controlled by the 𝜌 = 𝜎2∕𝜎1 = 𝜎3∕𝜎1 as
outlined in Section 2.2. Colors distinguish the different porosity values.

3. Numerical results and discussion

In the following, yield surfaces are constructed in the von Mises ver-
sus mean stress space for three values of the total porosity 𝑓0 = 0.00085,
0.017, and 0.034 to investigate the influence of the void distribution.
The results are obtained by imposing stress states corresponding to nine
different values of the stress ratio 𝜌 = -0.5, 0, 0.4, 0.625, 0.73, 0.8,
0.85, 0.9, and 0.99, spanning the range of positive stress triaxialities
(𝑇 = 0, 0.33, 1, 2, 3, 4.33, 6, 9.33, 99.33). The purely hydrostatic
state of stress 𝜌 = 1 is here omitted due to convergence issues. The
calculations for each stress state and porosity are repeated using 15
different randomizations of the void distribution to form a statistical
basis for the discussion of results. In addition, the FCC distribution
is investigated. Thus, a total of 432 combinations of stress state, void
distributions, and void volume fraction are considered.

3.1. Yield surfaces extracted as the unit cell limit-load

Fig. 5 presents the simulated yield points for all combinations of
porosity 𝑓0, stress triaxiality 𝑇 , and void distribution considered in
the present work. The circular markers show results for unit cells
with random void distributions, while the square markers are the
mean value given by Eq. (8) for a specific combination of porosity
and triaxiality. Here, solid lines indicate the yield surface represented
by the mean values. In addition, triangular markers indicate the cor-
responding results for the unit cell with a regular FCC distribution,
while the overlaying dashed lines illustrate the corresponding yield
surfaces. Colors distinguish the results for the different initial porosities
𝑓0, and the well known delay in yielding is evident for diminishing
initial porosity. This feature is also represented in the classical Gurson–
Tvergaard–Needleman (GTN) yield surface (Gurson, 1977; Tvergaard,
1981; Tvergaard and Needleman, 1984) which is defined by:

𝛷 =
𝜎2𝑒
𝜎20

+ 2𝑞1𝑓cosh
[

3
2
𝑞2
𝜎𝑚
𝜎0

]

−
(

1 + (𝑞1𝑓 )2
)

. (11)

Here, 𝜎𝑒 is the von Mises stress, 𝜎0 is the matrix material flow stress,
𝜎𝑚 = 𝜎𝑘𝑘∕3 is the mean stress, 𝑓 is the void volume fraction, and
𝑞1 = 1.5 and 𝑞2 = 1 are the Tvergaard-constants (Tvergaard, 1981). As
both the von Mises equivalent stress and the mean stress enter explicitly
into the GTN yield surface, it can readily be represented in the von
Mises versus mean stress space.

Fig. 5 shows a combined dependence on the void distribution and
the stress triaxiality. For the lowest triaxiality values, i.e., the results
closest to the von Mises stress axis, the effect of the void distribution is
negligible, and all yield points practically coincide. This is in line with
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Fig. 6. Yield surfaces constructed from the unit cell results based on the mean distance
𝜇 from the origin in the von Mises versus mean stress space, and the corresponding
standard deviation 𝐒∕𝜎0 (see Section 2.3). The gray-shaded region encloses about 70%
of the yield points. Colors distinguish the different porosity values.

results presented in Tekoğlu et al. (2015) and Holte et al. (2021), where
𝑇 = 1, corresponding to 𝜌 = 0.4, is found as the limit below which
the onset of macroscopic yielding (homogeneous yielding according
to Hure, 2021) co-occurs with void coalescence, i.e., with intervoid
localization. However, the dispersion in the yield points amplifies when
increasing the stress triaxiality indicating the activation of different or
more complex localization mechanisms that depends on the interaction
of voids and, thereby, their spatial distribution. The results for a specific
porosity and stress state show yield points over a significant range of
𝜎𝑒 and 𝜎𝑚 combinations, indicating that the void distribution is an im-
portant microstructural property for porous metals at these triaxiality
levels. Moreover, for the highest triaxiality (𝜌 ≈ 1), i.e. the results
closest to the mean stress axis, the spread in yield points is moderate
compared to the slightly lower triaxiality levels. This indicates a shift
in the localization mechanism, leading to a smaller dependency on the
void distribution.

Comparing results from the random void distributions to that of the
FCC unit cells, the regular void distribution generally displays more
plastic resistance, although it is not a strict upper bound. Evidently,
the yield point for the FCC configuration falls below that of some of
the random distributions for triaxiality values in the range 𝑇 = 1 to 4,
where a large dispersion in the yield points is observed for the random
distributions (see Fig. 5). At this triaxiality level, the stresses transverse
to the main loading axis increase the propensity to alter the localization
mode as the intervoid distances vary across the unit cell. In contrast,
the regular FCC configuration has the same ligament geometry between
all voids and, thus, will not exhibit the same shift in localization
mechanism when changing the stress state. However, the mean for the
random void distributions (solid lines) consistently gives less plastic
resistance than the FCC configuration (dashed lines), independently of
the initial porosity. The difference is prominent at moderate to high
triaxialities, while the yield surfaces practically coincide at low stress
triaxialities.

The dispersion in the yield points for the random void distributions
may be quantified by the standard deviation 𝐒 of the distance to the
origin (see Eq. (9)). Here, results are based on 15 randomizations of
each combination of porosity and triaxiality. Fig. 6 is constructed from
the unit cell results to show the yield loci defined by the mean surface
plus minus the standard deviation (𝜇 ± 𝐒) for the three investigated
void volume fractions. It is seen that the standard deviation increases
along the mean stress axis, i.e., with increasing triaxiality as discussed
for the dispersion concerning Fig. 5. That is, the values of 𝐒 are small
for low stress triaxialities approaching zero as 𝑇 → 0, while values
of 𝐒 are the highest in the interval 𝑇 = 4 to 5. Above this triaxiality
level, it decreases slightly as the triaxiality goes to infinity (𝜌 → 1).
5

Fig. 7. Standard deviation 𝐒∕𝜎0 of the mean distance from the origin to the yield
surface normalized by the yield stress 𝜎0 as a function of the applied stress ratio 𝜌
for the three porosity-values 𝑓0 considered. The dashed curves represent a piece-wise
cubic Hermite interpolation of the discrete data points. Colors distinguish the different
porosity values.

The span of the yield loci in Fig. 6 is consistent with the span of the
yield points quantified in Fig. 5. From Fig. 6, it also becomes clear
that the dispersion of the yield point at intermediate levels of stress
triaxiality and the narrowing as 𝜌→ 1 is most prominent for high initial
void volume fractions. This can be ascribed to the change between
localization mechanisms. For high 𝑓0-values, the intervoid ligaments
carry higher stresses due to the smaller volume fraction of matrix
material, making the ligaments more susceptible to the deformation
mechanism involving localization.

To quantify the variation in the dispersion of yield points, the
standard deviation normalized by the yield stress 𝐒∕𝜎0 is shown as a
function of 𝜌 in Fig. 7. Values obtained from the unit cell calculations
are circular markers, while a cubic Hermite interpolation of the results
is a continuous dashed line. The results confirm the increase in standard
deviation with increasing 𝜌 until a peak is reached around 𝜌 = 0.8 (cor-
responding to 𝑇 = 4.3), after which the standard deviation decreases
at higher triaxiality levels. The peak value and the subsequent drop in
the standard deviation are largest for the two highest initial porosities
(𝑓0 = 0.017 and 0.034), while the decrease at high triaxialities is more
modest for the lowest initial porosity (𝑓0 = 0.0085). The variation
in 𝐒∕𝜎0 with the prescribed stress state 𝜌 is clearly reflected in the
scatter of the results in Fig. 5. Moreover, it is noticed from Fig. 7 that
increasing 𝑓0 leads to a larger value for 𝐒∕𝜎0 for all triaxiality values.

3.2. Mechanisms leading to the dispersion of yield points

The plastic index 𝐏𝐈 introduced in Eq. (10) is considered in an
attempt to link the dispersion of the yield points to the localization
mechanism at play in unit cells with random void distributions. The
plastic index is calculated at the limit load for all configurations of 𝑓0
and 𝑇 and displayed with circular markers in Fig. 8. The mean value of
the plastic index 𝜇𝐏𝐈 for each porosity value is shown as a function of
𝜌 (solid lines). A plastic index of 1 corresponds to yielding in the entire
unit cell, while low 𝐏𝐈-values signal intense localization in a smaller
part of the unit cell volume.

It is observed from Fig. 8 that almost the entire unit cell volume
deforms plastically for 𝜌 ≲ 0.5 (corresponding to 𝑇 ≲ 4∕3) for all
values of 𝑓0 considered. This is well in line with the fact that macro-
scopic yielding (or homogeneous yielding) is the dominant deformation
mechanism at low to moderate values of stress triaxiality, rendering the
effect of the void distribution negligible. In contrast, the plastic index
shows a much greater dispersion for higher values of 𝜌, ranging from
0.4 to 1. The low values of the plastic index reflect intense localization
in a small portion of the unit cell, which is highly controlled by the loca-
tion of the voids and, thereby, the void distribution. At high triaxiality
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Fig. 8. The plastic index 𝐏𝐈 introduced in Eq. (10) for all combinations of porosity
𝑓0, stress state 𝑇 , and void distributions (15 different randomizations of each 𝑓0 − 𝑇 -
combination) as a function of the ratio 𝜌. The mean plastic index 𝜇𝐏𝐈 is also shown as
solid lines. Colors distinguish the different porosity values.

Fig. 9. Standard deviation 𝐒𝐏𝐈 of the plastic index 𝐏𝐈 (see Eq. (10)) as a function of
the applied stress ratio 𝜌 for the three porosity-values 𝑓0 considered. The dashed curves
represent a piece-wise cubic Hermite interpolation of the discrete data points. Colors
distinguish the different porosity values.

Fig. 10. Mean distance from origin 𝜇 form the unit cell calculations as a function
of the stress ratio 𝜌, alongside with error bars indicating the standard error of mean
𝐒𝐄𝐌 = 𝐒∕

√

𝑛. Here is 𝐒 the standard deviation, and 𝑛 is the sample size (𝑛 = 15). The
results are shown together with the predictions for the classical Gurson–Tvergaard–
Needleman (GTN) model for the three values of 𝑓0 considered. Colors distinguish the
different porosity values.

levels, the limit load can be attained through macroscopic yielding,
e.g., for equally distanced voids, and microscopic localization if voids
are located in a favorable band. Moreover, the large stress components
transverse to the main loading direction increases the likelihood of
encountering a favorable voided band. It is this combined effect of
different mechanisms or between different favorable localization modes
6

at high stress triaxialities that makes void distribution essential to the
plastic resistance. In this way, it is the localization mechanism that
controls the dispersion in both the plastic index 𝐏𝐈 and the yield loci
shown in Figs. 5 and 6. This is also evident from Fig. 9, showing the
standard deviation of the plastic index 𝐒𝐏𝐈 as a function of 𝜌 for all
values of 𝑓0 considered. For increasing triaxiality, i.e., increasing 𝜌,
the standard deviation increases, indicating a greater variation in the
plastic deformation mechanism, and the variation compares well to that
of 𝐒∕𝜎0 in Fig. 7. As seen in Fig. 7, the standard deviation for the plastic
index 𝐒𝐏𝐈 also increases with increased 𝑓0 since the size and position of
the intervoid ligaments affect the deformation mechanism to a greater
extent when the void volume increases.

At high triaxialities, the dispersion in the PI is large, consistent with
some RVEs having localized plastic deformation. This manifests itself in
an inclined intersection of the yield surface with the mean stress axis
(see Fig. 5), consistent with localization models like that of Thomason
(1985).

3.3. Introducing the effect of randomness into the GTN yield surface

Fig. 10 shows the mean distance to the origin 𝜇 based on Eq. (8) as
obtained from the unit cell investigations of random void distributions
where each data point and corresponding standard error is based on
15 different randomizations of the void distributions. The small error
bars in Fig. 10 show the standard error of the mean, indicating that a
sufficient sample size is used. Moreover, the initial void volume fraction
has little effect on the plastic resistance distance for 𝑇 < 1, while the
influence of porosity increases with triaxiality. Comparing the results
to the predictions by the classical GTN model, a good agreement is
obtained for all values of the initial porosity 𝑓0 and stress states 𝜌.
Thus, the GTN model may form a basis for a micro-mechanics based
continuum model accounting for random void distributions if modified
suitably.

The classical GTN model cannot account for the dispersion of the
yield points observed in Fig. 5 and mapped out in Fig. 7, which
are consequences of randomness in the void distribution. However,
as demonstrated in Fig. 6, the unit cell response is accurately repre-
sented by overlaying the mean distance 𝜇 by the standard deviation 𝐒
suggesting that the yield locus is within

𝛷 = 𝛷𝜇 ±𝛷𝐒 (12)

where 𝛷𝜇 is the mean of the yield locus and 𝛷𝐒 represents the spread of
the yield surface. Thus, since the GTN model quite accurately models
the mean yield surface (see Fig. 10), it is suggested to scale the distance
to the origin of the GTN yield surface with the standard deviation
such that the distribution-enriched GTN yield locus, within a standard
deviation, is expressed as

𝛷 =
𝜎2𝑒
𝜎20

+ 2𝑞1𝑓cosh
[

3
2
𝑞2
𝜎𝑚
𝜎0

]

−
(

1 ± 𝐒
𝜎0

)2
(

1 + (𝑞1𝑓 )2
)

, (13)

Here, 𝐒 is the standard deviation of the distance to the yield surface,
which is a function of the porosity 𝑓 and the stress state 𝜌 according
to Fig. 7. A continuous yield function is obtained for the stress states
and porosity values considered by incorporating the cubic Hermite
interpolation, and Fig. 11 depicts the new yield surfaces alongside
the classical GTN yield surface. The GTN yield surface (dashed lines)
represents the mean surface of the unit cell with random void distribu-
tions, while the dispersion of yield points is obtained through the scale
factor (1 ± 𝐒∕𝜎0)2 shown as solid lines on either side of the mean yield
surface. The depicted confidence interval of ±𝐒∕𝜎0 encloses 70% of the
expected yield points observation due to random void distributions. It
is worth noting that the characteristic dispersion of the yield surface
is achieved such that there is little effect of the random distribution at
low stress triaxiality, while the spread of the curves on either side of
the mean increases with stress triaxiality until about 𝑇 ≈ 4. Moreover,
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Fig. 11. Yield surfaces constructed from the new distribution-enriched Gurson–
Tvergaard–Needleman (GTN) model in Eq. (13), showing the mean curve as a dashed
line (repressed by the classical GTN model) and the dispersion of the yield surface
represented by a confidence interval of ±𝐒∕𝜎0 (enclosing 70% of the yield point
observations). The yield surfaces are illustrated for the three initial porosity values
considered distinguished by different colors.

the narrowing of the dispersion in the yield surface close to the mean
stress axis is also captured (see Figs. 5, 6, and 11). However, it should
be noted that, in the high triaxiality regime the GTN model does
not represent localization accurately and hence efforts to model yield
surfaces analytically should be augmented by appropriate localization
strategies.

The proposed distribution-enriched GTN yield surface in Eq. (13)
can be employed in large-scale continuum modeling by assigning indi-
vidual finite elements (or Gauss points) a new material value 𝛼, which
determines the yield surface for this particular material point. That is,
the distribution-enriched yield surface may be expressed as

𝛷 =
𝜎2𝑒
𝜎20

+ 2𝑞1𝑓cosh
[

3
2
𝑞2
𝜎𝑚
𝜎0

]

−
(

1 ± 𝛼
𝜎0

)2
(

1 + (𝑞1𝑓 )2
)

, (14)

where the 𝛼-value could be assigned with a random spatial distribution
of average value zero throughout the volume, such that it follows a
normal distribution of the form

𝜓(𝛼) = 1
√

2𝜋𝐒2
exp

[

− 𝛼2

2𝐒2

]

. (15)

Here, 𝐒 is the corresponding standard deviation (see Fig. 7). It would
be expected that the interval 𝛼 ∈ [±2𝐒] would represent about 95%
of the yield point observations obtained from unit cell calculations,
while 70% of the observations would lie in the interval 𝛼 ∈ [±𝐒]
(depicted in Fig. 6). Note that for a given value of the distance to the
yield surface, appropriate derivatives of 𝛼 must be included to obtain
the yield surface normal. Adopting this procedure and introducing
the yield surface from Eq. (14) into a continuum-based finite element
calculation would reflect the dispersion of yield points when using a
discretization where individual integration points represent about four
voids. Increasing the number of voids described by a yield surface in
an integration point would need appropriate scaling of the standard
deviation up until the limit, where each integration point describes a
very large ensemble of voids and a mean yield surface is appropriate.
In this way, the resolution of the discretization will control the effect
of the random void distributions.

In this work, unit cells with four voids have been chosen as repre-
sentative of a microstructural configuration. This was deemed to be a
good balance between the highly idealized single-void unit cell and a
unit cell with a large number of voids which can be computationally
costly and not representative of inhomogeneous deformation at a scale
of a characteristic void distribution. The framework can readily accom-
modate unit cells with different number of voids. A larger number of
7

voids would represent a larger material region and thus lead to smaller
standard deviation of the unit cell properties.

4. Conclusions

The present work demonstrates how the dispersion of yield points,
identified as the limit load, in ductile metals with random void dis-
tributions ties to the deformation mechanism and suggests a way to
incorporate the findings into the Gurson–Tvergaard–Needleman yield
surface. The study relies on a numerical investigation of a periodic
microstructure represented by unit cells containing a limited number
of randomly distributed voids. The unit cell setup is considered a
mesoscale model of the material and it provided insight into the sta-
tistical characteristics of the yield locus owing to the void distribution.
The key findings for the dispersion of the yield points are

• A strong dependency on the stress state exists. The dispersion due
to random void distributions is practically zero at low triaxiality,
while it grows to the largest value in the range of 4 < 𝑇 < 5
and drops slightly for higher triaxialities (see Figs. 5 and 6). The
reason is found in the deformation mechanism at play as macro-
scopic yielding prevails at low triaxiality (in line with Tekoğlu
et al., 2015), while a complex mixture of localization modes can
develop at higher triaxiality depending on the intervoid distance
and location of the voids (see discussion in Section 3.3).

• The standard deviation follows the deformation mechanism. The
plastic index introduced in Eq. (10) is adopted to demonstrate
a correlation between the dispersion and the prevailing defor-
mation mechanism. The index equals one when plastic straining
occurs in the entire unit cell at the limit load, while small index
values signal localization in a portion of the unit cell volume. It
is found that the index displays a large spread for different ran-
domization when 𝑇 ≳ 4 and that the index standard deviation of
the observations correlates with that of the dispersion of the yield
points. Thus, it is concluded that the variations in the localization
mechanism determine the dispersion of the yield points.

• The porosity influences the spread of the yield locus. The variation in
the standard deviation of both 𝐏𝐈 and 𝜇 depends on the porosity
as the intervoid ligament size diminishes with increasing void
volume fraction. The variation is most significant for a large
porosity such that the peak value of 𝐒 attains the highest level
at 𝜌 ≈ 0.8 (corresponding to 𝑇 ≈ 4.3) but also the largest relative
drop at higher triaxialities (see Fig. 7). Thus, the width of the
yield locus up until 𝑇 ≈ 4.3 and the following narrowing near the
mean stress axis increases with porosity (see Figs. 6 and 11).

The present work investigates statistical variations of yield surfaces
for porous materials. It is shown that the classical GTN yield surface
rather accurately models the mean yield surface from the unit cell
calculations with random void distributions in the full range of positive
stress triaxialities (see Fig. 10). Thus, the classical GTN model may
be used as a backbone model in a distribution-enriched extension that
accounts for the dispersion of the yield point. The GTN model may be
enriched by scaling its size by a factor of (1 ± 𝐒∕𝜎0)2. This provides a
model in good agreement yield surface obtained from unit cell calcu-
lations (see Figs. 5, 6, and 11). Finally, a procedure for implementing
the new GTN model is proposed in Section 3.3.
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