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Abstract. Linear elastic fracture mechanics (LEFM) mod-
els have been used to estimate crevasse depths in glaciers
and to represent iceberg calving in ice sheet models. How-
ever, existing LEFM models assume glacier ice to be homo-
geneous and utilize the mechanical properties of fully con-
solidated ice. Using depth-invariant properties is not realis-
tic as the process of compaction from unconsolidated snow
to firn to glacial ice is dependent on several environmen-
tal factors, typically leading to a lower density and Young’s
modulus in upper surface strata. New analytical solutions for
longitudinal-stress profiles are derived using depth-varying
properties based on borehole data from the Ronne Ice Shelf
and are used in an LEFM model to determine the maxi-
mum penetration depths of an isolated crevasse in grounded
glaciers and floating ice shelves. These maximum crevasse
depths are compared to those obtained for homogeneous
glacial ice, showing the importance of including the effect
of the upper unconsolidated firn layers on crevasse propa-
gation. The largest reductions in the penetration depth ratio
were observed for shallow grounded glaciers, with variations
in Young’s modulus being more influential than firn density
(maximum differences in crevasse depth of 46 % and 20 %,
respectively), whereas firn density changes resulted in an in-
crease in penetration depth for thinner floating ice shelves
(95 %–188 % difference in crevasse depth between constant
and depth-varying properties). Thus, our study shows that the
firn layer can increase the vulnerability of ice shelves to frac-
ture and calving, highlighting the importance of consider-
ing depth-dependent firn layer material properties in LEFM

models for estimating crevasse penetration depths and pre-
dicting rift propagation.

1 Introduction

The formation of surface and basal crevasses as a conse-
quence of deformation in ice sheets plays an influential role
in glacial mass balance (Colgan et al., 2016). Crevasses are
predominantly mode-I (tensile) fractures that propagate ver-
tically downwards to the depth at which they stabilize (i.e.
maximum crevasse depth), depending on the longitudinal-
stress state normal to the fracture surface (Enderlin and
Bartholomaus, 2020). Fracture propagation can be further
aided by the accumulation of meltwater within surface
crevasses, the supply and storage of which can be attributed
to supraglacial lakes and firn aquifers (Poinar et al., 2017).
This can trigger a process called hydrofracture, wherein the
meltwater in the crevasse exerts additional opening stress
on the crevasse walls (Weertman, 1973). If the volume of
meltwater is sufficiently large, hydrofracture can cause full-
thickness crevasse propagation and lead to large-scale ice-
berg calving events from ice shelves (Scambos et al., 2009)
and to increases in basal sliding rates (Selmes et al., 2011).
Glacial mass loss caused by the calving events represents one
of the leading contributors to global sea level rise (Rignot
et al., 2013; Frederikse et al., 2020; Siegert et al., 2020).

The first study to examine crevasse propagation in glaciers
and ice sheets was conducted by Nye (1957), who proposed
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an analytical zero-stress model. The so-called Nye zero-
stress model assumed that crevasses are dry and that ice
has no resistance to fracturing; thus, a crevasse will propa-
gate to a depth at which tensile stresses are completely off-
set by the compressive overburden pressure due to gravita-
tional self-weight. The zero stress was later adapted by Benn
et al. (2007) to accommodate for the presence of meltwa-
ter in crevasses. Nevertheless, this simplistic model agreed
well with observational results for fields of closely spaced
crevasses (Mottram and Benn, 2009), where neighbouring
crevasses provide shielding effects in relation to crack tip sin-
gularities (Weertman, 1974). However, it underestimates the
depths of isolated crevasses, where this shielding effect is not
present. Therefore, linear elastic fracture mechanics (LEFM)
models were introduced by van der Veen (1998a, b) to model
these isolated surface and basal crevasses.

LEFM models capture the effects of the stress singularity
(assuming that the resulting plastic zone around the crack tip
is sufficiently small) by evaluating the stress intensity fac-
tor at the crack tip. The role of crack size and orientation,
ice thickness, and applied loading conditions can be captured
through the evaluation of the stress intensity factor (Jiménez
and Duddu, 2018). Using the principle of superposition, the
LEFM models include the contributions from the tensile nor-
mal stress, the lithostatic compressive stress, and the meltwa-
ter pressure. The LEFM approach has been combined with
full-Stokes models to study surface and basal crevasse prop-
agation in Thwaites Glacier, with results agreeing well with
NASA’s radar penetration depths (Yu et al., 2017). In ad-
dition, LEFM models have been used to map the vulnera-
bility of Antarctic ice shelf crevasses subject to meltwater-
driven hydrofracture, with projections agreeing well with ex-
isting fractures being mapped by neural networks (Lai et al.,
2020). The LEFM approach has been successfully combined
with boundary element methods, capturing the interactions
between basal and surface crevasses and providing estimates
regarding the stability (Zarrinderakht et al., 2024) and evo-
lution of crevasse shape (Zarrinderakht et al., 2022). How-
ever, while analytical LEFM models are computationally ef-
ficient and can be implemented into numerical ice sheet mod-
els (Krug et al., 2014), they do not account for the role of
creep deformation or of depth-varying ice material proper-
ties in crevasse propagation (Gao et al., 2023).

In recent years, several studies focused on the development
of computational approaches for modelling crevasse propa-
gation in grounded glaciers and floating ice shelves. Notably,
continuum damage mechanics (CDM) approaches were de-
veloped to describe more complex thermo-hydro-mechanical
phenomena, but they are computationally more intensive
compared to zero-stress and LEFM approaches. Such ap-
proaches can capture the effects of viscous deformation and
long-term stress states on crevasses (Duddu and Waisman,
2012; Jiménez et al., 2017; Duddu et al., 2020) and can be
readily implemented into Stokes-based ice flow models (Pra-
long and Funk, 2005; Sun et al., 2017). Recent studies have

developed phase field fracture models that formulate LEFM
crack propagation criteria within the CDM framework, thus
unifying the two approaches (Sun et al., 2021; Clayton et al.,
2022). Additionally, CDM-based models can be useful in as-
sessing the accuracy of LEFM and zero-stress models and in
understanding the conditions under which their predictions
are valid (Duddu et al., 2020).

While the above-mentioned LEFM and CDM studies cap-
ture a range of mechanical interactions, they assume glacial
ice to be a homogeneous material, with the values of me-
chanical properties taken as constants equal to those of
fully consolidated ice. In reality, glacial ice forms from the
accumulation of snowfall at the upper surface and under-
goes compaction as a result of the overburden pressure, the
rate of which is dependent on accumulation rates and sur-
rounding temperatures (Veldhuijsen et al., 2023). Moreover,
snowflakes are restructured into smaller ice crystals due to
wind, which then deform into more stable, compact crystal
arrangements (Benn and Evans, 2010); this causes large dif-
ferences in the porosity, density, and strength of these top
snow layers, referred to as firn, and the deeper glacial ice. Ne-
glecting firn layers leads to an overestimation of mechanical
properties in the upper strata (Rist et al., 2002, 1996). This is
of particular importance for geological media subject to self-
gravitational loading (Paterson, 1994) because the driving
stresses are dependent on the mechanical properties in such
layered or vertically graded materials. The main hypothesis
of this study is that accounting for these depth-dependent
material parameters in the LEFM framework would alter the
crevasse penetration depths in glaciers and ice shelves.

The aim of this article is to explore the importance of in-
cluding firn layer effects on surface crevasse propagation.
To this end, we determine the maximum crevasse depths
in idealized glaciers and ice shelves assuming two differ-
ent material conditions: fully consolidated homogeneous ice
and vertically graded ice as reported from ice core samples,
with depth-varying material properties. We derive the ana-
lytical solution for the far-field longitudinal stress σxx with
depth-dependent properties, which primarily drives the verti-
cal propagation of mode-I crevasses. Next, we systematically
investigate the effect of varying each material property in the
unconsolidated firn layers through parametric studies as fol-
lows: using only the depth-variant density in Sect. 2.1, using
only the depth-variant Young’s modulus in Sect. 2.2, and us-
ing both the depth-variant density and depth-variant Young’s
modulus in Sect. 2.3. We then conduct fracture mechanics
studies in Sect. 3 for a grounded glacier using the analytical
LEFM models presented in Jiménez and Duddu (2018) and
verify the models’ accuracy with the stress-based phase field
fracture model of Clayton et al. (2022). Through variations in
meltwater depth ratios in water-filled surface crevasses and in
ocean water heights in marine-terminating glaciers, the con-
ditions under which depth-dependent material properties are
influential are explored. In Sect. 4, these studies are extended
to floating ice tongues. Sect. 5 considers the effects of as-
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suming that crevasses develop rapidly (as linear elastic) ver-
sus slowly (as non-linear viscous), and we summarize all the
findings in Sect. 7.

2 Analytical solutions for the longitudinal stress

We consider a grounded glacier with an idealized rectangular
geometry of height H and length L. We neglect lateral shear
and restrict the domain to a flow line near the terminus, with
x and z representing the along-flow and vertical coordinates.
As the out-of-plane length of the glacier is typically much
longer than its length, the plane strain assumption is ex-
ploited to reduce the three-dimensional glacier geometry to a
two-dimensional (height and length) representation. A visual
representation of the geometry and boundary conditions can
be found in Fig. 1. Horizontal displacements are restrained in
the far left of the domain to prevent rigid body motion, and a
free-slip boundary condition is applied by restraining vertical
displacements at the base (represented by rollers). The upper
surface is defined as a traction-free surface, representing the
atmosphere–ice interface. The load contributions considered
are the gravitational self-weight, ocean water pressure at the
far-right terminus, and meltwater pressure in the crevasse.
Note that, under the small-deformation assumption, this rep-
resentation of the grounded glacier is identical to that of a
floating ice shelf (Weertman, 1957) in the far-field region.

The far-field longitudinal stress (based on the long-
wavelength approximation) within the grounded glacier or
ice shelf was derived for the case of steady-state creep with
constant (i.e. depth-independent) and homogeneous material
properties by Weertman (1957). Recently, this longitudinal
stress was derived for compressible linear elasticity by Sun
et al. (2021) as follows:

σxx =
ν

(1− ν)
ρig

(
z−

1
2
H

)
−

1
2
ρsgh

2
w

H
, (1)

where ν = 0.35 is the Poisson’s ratio, assumed to be
equal for firn and ice; g is gravitational acceleration; ρi =

917 kgm−3 is the density of fully consolidated glacial ice;
ρs = 1020 kgm−3 is the seawater density; and hw is the sea-
water height above the glacier bed. We use the convention
that positive σxx corresponds to tensile stresses, creating
and propagating crevasses, whereas negative σxx is compres-
sive, thus stabilizing the glacier and preventing the forma-
tion of crevasses. This analytical stress will be used through-
out this paper to compare between the cases with homoge-
neous (given by the above equation) and depth-dependent
(derived in the remainder of this section) material proper-
ties. The Poisson ratio ν used within our results represents
ice as a linear elastic compressible solid, which is a common
assumption for rapidly propagating cracks. If the crevass-
ing process occurs on a timescale well below the Maxwell
timescale, ranging from hours to days depending on the strain
rate due to the non-linear viscous nature, the assumption of

compressibility would be valid. If, instead, the crevassing
process occurs slowly, over the span of weeks, the assump-
tion of incompressibility would be valid; thus, a Poisson ratio
of ν = 0.5 will allow for the model derived here to be appli-
cable over longer timescales. Results for this incompressible
case are given in Sect. 5, whilst results for a depth-dependent
Poisson ratio are presented in Appendix E.

As shown in Fig. 2, ice core sample data from the Ronne
Ice Shelf, gathered and presented by Rist et al. (2002), indi-
cate large variations in material properties within the firn and
meteoric ice layers forming the upper 150 m of the ice core.
The ice core data for density can be fitted using the following
exponential equation (Paterson, 1994; van der Veen, 1998a):

ρ(z)= ρi− (ρi− ρf)e
−(H−z)/D, (2)

where ρf = 350 kgm−3 is the density of the unconsolidated
upper surface firn layers, H is the height of the glacier, z is
the vertical coordinate (z= 0 at the base of the glacier, z=
H at the surface), and D is a constant taken as D = 32.5m
(Rist et al., 2002). This constant gives an indication of the
thickness of the firn layer: at the surface z=H , the density
of the glacier is equal to that of the unconsolidated firn; at
a depth of H − z=D below the surface, the density is in
between that of firn and ice at 75% of the density of ice; and
at a depth of H − z= 2.5D below the surface, the density of
the glacier is 95% the density of consolidated ice.

The ice core sample data for elastic modulus from Fig. 2
can be fitted using a similar function as that used for the den-
sity, including the depth-dependent Young’s modulus:

E(z)= Ei− (Ei−Ef)e
−(H−z)/D, (3)

where Ei = 9.5 GPa is Young’s modulus for solid ice, Ef =

1.5GPa is Young’s modulus for unconsolidated upper sur-
face firn layers, andD = 32.5m is a tuned constant. Here, we
have chosen to use a single constant D to describe the depth
variations in both density and Young’s modulus. While this is
not necessary for the derivation of the analytic solutions, the
interpretation of D as a length scale of the firn layer thick-
ness indicates that Young’s modulus is directly proportional
to density and is inherently related to porosity, similarly to
porous metallic foams (Ashby et al., 2000).

In the remainder of this section, analytical expressions are
derived for the longitudinal stresses driving the creation of
crevasses. We first consider two cases wherein only the den-
sity or Young’s modulus is depth-varying so as to isolate
and examine the influence of each property on the maximum
crevasse penetration depth. For the third and final case, we
consider both properties to be depth-varying, which is the
real-case scenario.

2.1 Depth-varying density

We consider it to be that only the density is depth-dependent
following Eq. (2), while Young’s modulus is constant
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Figure 1. Schematic diagram showing the geometry and boundary conditions of a grounded glacier containing a single surface crevasse.

Figure 2. Profile of depth-dependent mechanical properties for ice
density (red, bottom axis) and Young’s modulus (blue, top axis).
Data extracted from ice core specimens from the Ronne Ice Shelf
by Rist et al. (2002) are displayed as markers. Isotropic properties
are displayed with the dotted lines.

throughout the full thickness (van der Veen, 1998a). The
lithostatic compressive stress for this density distribution is

∂σzz

∂z
=−ρ(z)g, (4)

with g denoting the gravitational acceleration. By substitut-
ing Eq. (2) for the depth-dependent density and integrating
over the depth, the vertical stress component is obtained as
follows:

σzz =−ρig (H − z)+ (ρi− ρf)Dg
(

1− e−(H−z)/D
)
. (5)

The above relation consists of a linear stress contribution
from ρi and an exponential term that reduces the net litho-

static stress when considering the effects of firn density ρf.
This solution can be simplified to the homogeneous ice case
when considering ρi = ρf.

Exploiting the plane strain assumption εyy = 0 allows for
the out-of-plane stress σyy to be found in terms of longitudi-
nal stress σxx and lithostatic stress σzz:

σyy = ν (σxx + σzz) . (6)

Assuming small strains and small rotations, the longitudinal
strain can then be written in terms of σxx and σzz by using
Hooke’s law and Eq. (6):

εxx =
1
E

(
(1− ν2)σxx − ν(1+ ν)σzz

)
. (7)

Following this, the membrane strain assumption is adopted
due to the thickness of the glacier being several orders of
magnitude smaller than the length. The longitudinal strain is
therefore invariant with depth (Sun et al., 2021):

∂εxx

∂z
= 0. (8)

Note that the above condition can be derived using Föppl–
von Kármán equations describing the large deflections of thin
flat plates. Applying this constraint to Eq. (7) allows for the
derivative of the horizontal stress to be found:

∂σxx

∂z
=

ν

1− ν
∂σzz

∂z
, (9)

leading to a far-field longitudinal stress of

σxx =
ν

1− ν
σzz+Rxx, (10)

where Rxx is an integration constant that can be interpreted
as the depth-invariant tensile resistive stress. Substituting the
lithostatic compressive stress σzz from Eq. (5) gives the fol-
lowing:

σxx =
ν

1− ν

(
− ρig(H − z)

+(ρi− ρf)Dg
(
1− e−(H−z)/D

))
+Rxx . (11)
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It can be observed that the far-field longitudinal stress is
composed of two components: the lithostatic compressive-
stress component, which is always negative and thus is re-
sponsible for crevasse closure, and the resistive tensile stress
Rxx , which is responsible for crevasse opening. van der Veen
(1998a) conjectured that the inclusion of firn density into
the LEFM model would lead to deeper crevasse propagation
because the magnitude of the lithostatic compressive stress
would be reduced; however, the reduction in tensile resis-
tive stress was not considered. van der Veen (1998b) stated
that “accounting for the lower firn density almost doubles the
penetration depth of surface crevasses compared to the con-
stant density model”. To properly account for the influence
of firn density, we evaluate the indefinite integration constant
Rxx , appearing in Eq. (10), by considering force equilibrium
over the entire thickness in the longitudinal direction as fol-
lows:

H∫
0

σxx dz+Fw = 0, (12)

where Fw =
1
2ρsgh

2
w is the hydrostatic force as a result of

the ocean water pressure at the glacier front. From this equi-
librium between the glaciological longitudinal stress and the
ocean water pressure at the terminus, we find the resistive
tensile stress as follows:

Rxx =
ν

1− ν
ρigH

2
− ρsg

h2
w

2H
−

ν

1− ν
(ρi− ρf)gD

+
ν

1− ν
(ρi− ρf)gD

2

H
(1− e−H/D). (13)

Negative values of Rxx , together with the lithostatic
compressive stress, prevent crevasse propagation, whereas
crevasses can only nucleate when Rxx exceeds the lithostatic
stress.

Substituting the value of Rxx into the far-field longitudinal
stress of Eq. (11) gives the following analytical solution:

σxx =
ν

1− ν
ρig

(
z−

1
2
H

)
−

1
2
ρsgh

2
w

H

+
ν

1− ν
(ρi− ρf)gD

(
−e−(H−z)/D +

D

H
(1− e−H/D)

)
. (14)

This solution can be simplified to the one for the far-field
longitudinal stress in the depth-invariant case, as in Eq. (1),
when considering ρi = ρf. The first term indicates that ho-
mogeneous land-terminating glaciers develop crevasses up to
half their thickness (based on the zero-stress model), whereas
the second (negative) term due to the ocean water height re-
duces the crack-driving stress, thereby providing a stabiliz-
ing effect. The third term includes the influence of the depth-
dependent density over the stress that is a function of the
vertical coordinate z; this term is negative near the top sur-
face, thus stabilizing the top firn layers, but it tends toward

a positive constant in the bottom regions of the glacier, thus
increasing the propensity for deeper crevasse propagation be-
low a certain depth. Thus, the inclusion of depth-dependent
density can thwart or promote deeper crevasse propagation
depending on the glacier and ocean water heights, which is
more nuanced than the description by van der Veen (1998a),
who neglected any influence of depth-varying density on re-
sistive stress Rxx .

2.2 Depth-varying Young’s modulus

We next derive the relation for far-field longitudinal stress
considering a depth-variant elastic modulusE(z). The depth-
dependent longitudinal strain is given by

εxx =
1

E(z)

(
(1− ν2)σxx(z)− ν(1+ ν)σzz(z)

)
, (15)

with E(z) given by Eq. (3). In the depth-invariant modu-
lus cases, E simply gets eliminated with Eq. (8), leading
to a horizontal stress that is independent of Young’s mod-
ulus, as given by Eqs. (1) and (14). However, in the depth-
dependent modulus case, E does not get eliminated from
the far-field longitudinal stress with the membrane strain as-
sumption. However, the longitudinal strain must be depth in-
variant, as required by Eq. (8), and so we get

(1− ν2)

E
∂σxx

∂z
− σxx

∂E

∂z

E2 − ν(1+ ν)
E
∂σzz
∂z
− σzz

∂E

∂z

E2 = 0. (16)

This can then be rearranged to obtain the following expres-
sion for the horizontal stress derivative:

∂σxx

∂z
=

ν

1− ν
∂σzz

∂z
−

ν

1− ν
σzz

E

∂E

∂z
+
σxx

E

∂E

∂z
. (17)

This derivation can be simplified to the depth-invariant case
if ∂E/∂z= 0. Solving the above ordinary differential equa-
tion yields the following longitudinal stress for constant den-
sity:

σxx =
ν

1− ν
ρig

(
z−

(Ei−Ef)

Ei
He−(H−z)/D

)
+C1

(
Eie

(H/D)
− (Ei−Ef)e

(z/D)
)
, (18)

where C1 is an integration constant that can be determined
using force equilibrium in the longitudinal direction, as de-
fined by Eq. (12), which yields

C1 =
1

EiHeH/D − (Ei−Ef)D
(
eH/D − 1

) ( ν

1− ν

·

(
Ei−Ef

Ei
DρigH

(
1− e−H/D

)
−
ρigH

2

2

)
−
ρsgh

2
w

2

)
. (19)

Substituting the above into Eq. (18), we obtain the
longitudinal-stress distribution for the depth-varying Young’s
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modulus and constant-density case as follows:

σxx =
ν

1− ν
ρig

(
z−

1−E∗

2
H

)
−

1
2
(1+E∗)

ρsgh
2
w

H
,

where E∗ =
(Ei−Ef)

Ei

(1− e−H/D)D
H
− e−(H−z)/D

1− (1− e−H/D) (Ei−Ef)D
EiH

. (20)

As expected, the solution for the variable Young’s modulus
case can be simplified to the far-field longitudinal stress for
the depth-invariant case, where Ei = Ef (E∗ = 0). Notably,
the variable density only provided an additional term to the
homogenous case, but the variable Young’s modulus also al-
ters all the terms in the longitudinal-stress relation. Including
the effects of the firn layer’s modulus redistributes the contri-
bution of the horizontal ocean water pressure, where its con-
tribution is less near the surface (E∗ < 0) and greater near
the base (E∗ > 0).

2.3 Depth-varying Young’s modulus and density

The final stress relationship we derive is for the case with the
depth-varying density and Young’s modulus using Eqs. (2)
and (3), respectively. We do not show the full details of the
derivation as it is similar to that in the previous sections. We
use the horizontal stress derivative given in Eq. (17) and sub-
stitute the lithostatic compressive stress and derivative from
Eqs. (4) and (5). This gives us an ordinary differential equa-
tion that is solved using MATLAB’s symbolic toolkit to ob-
tain the longitudinal stress σxx as follows:

σxx =
ν

1− ν
g
(
−ρi(H − z)+ (ρi− ρf)D(1− e−(H−z)/D)

)
+ (Eie

H/D
− (Ei−Ef)e

z/D)C2, (21)

where C2 is the indefinite integration constant, which can be
found using force equilibrium.

C2 =
1

EiHeH/D − (Ei−Ef)D
(
eH/D − 1

) ( ν

1− ν

(
ρigH

2

2

−(ρi− ρf)gHD+ (ρi− ρf)gD
2(1− e−H/D)

)
−
ρsgh

2
w

2

)
(22)

Substituting C2 back into σxx gives the final expression:

σxx =
ν

1− ν
ρig

(
z−

1−E∗

2
H

)
−

1
2
(1+E∗)

ρsgh
2
w

H

+
ν

1− ν
(ρi− ρf)gD

((
1− e−(H−z)/D

)
+ (1+E∗)

(
− 1+

D

H
(1− e−H/D)

))
, (23)

where Young’s modulus ratio E∗ is defined in Eq. (20). The
above equation can be reduced to the analytic relation for
depth-dependent density in Eq. (14) if Young’s modulus is
constant (E∗ = 0) and can be reduced to the analytical rela-
tion for the depth-dependent Young’s modulus, as in Eq. (20),
if the density is constant (ρi− ρf = 0).

2.4 Limitations of analytical LEFM models

There are a few limitations to be noted regarding the out-
comes of the LEFM models used in this study (refer to the
Appendices). First, the depth variations of the mechanical
properties are assumed based on borehole samples from ice
cores in the Ronne Ice Shelf; therefore, they may not be fully
representative of other Antarctic ice shelves or glaciers else-
where. For example, temperate glaciers that are subject to
higher rates of melting and refreezing will undergo a faster
rate of densification due to meltwater percolating into pore
spaces and refreezing (Wakahama et al., 1976). Thus, the
process of firn densification is dependent on environmental
factors including accumulation rates, overburden pressure,
temperature, and local strain rates (Oraschewski and Grin-
sted, 2022). For instance, Seward Glacier, Yukon, Canada, is
fully consolidated at a depth of 13m in contrast to sites on the
Greenland Ice Sheet where transitions from firn to glacial ice
occur at depths of ≈ 66m (Paterson, 1994). Data from sur-
rounding borehole samples should therefore be considered
when assessing the depth to which crevasses propagate to in-
clude the effects of firn layer properties.

The fracture analysis used in the following sections also
assumes that, over short timescales, ice behaves as an elas-
tic compressive material (ν = 0.35), with crevasses propa-
gating rapidly in a brittle manner. However, in reality, ice
behaves like an incompressible fluid over longer timescales,
with viscous deformation being described using Glen’s flow
law (Glen, 1955). The effects of time-dependent deforma-
tion can be included in an ad hoc manner by taking the
stress from Stokes-based formulations and using LEFM to
propagate crevasses in a staggered manner (Yu et al., 2017).
Furthermore, the cracking conditions can be more complex
than those that can be addressed with a simple analytical
model (e.g. multiple crevasse interactions). To account for
non-linear behaviour and problems of arbitrary complexity,
one can utilize phase field fracture (Clayton et al., 2022),
cohesive zone (Gao et al., 2023), or nonlocal creep damage
(Huth et al., 2021, 2023) models. However, these non-linear
models are computationally costly and not so easy to imple-
ment within numerical ice sheet models, and so analytical
LEFM models are desirable.

3 Results for grounded glaciers

Figure 3 shows the analytical solutions of the far-field lon-
gitudinal stress σxx in a land-terminating grounded glacier
(hw = 0m) of height H = 125m. Each subfigure includes
the longitudinal stress versus depth profiles for depth-varying
properties (derived in the previous section) and those of the
homogeneous case. In addition to the analytical solutions,
numerical results from the finite-element solver COMSOL
Multiphysics are plotted for the verification of our analytic
expressions. The analytical solutions derived are identical
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to the numerical results, confirming the correctness of the
presented expressions along with the appropriateness of the
membrane strain assumption.

Using these stress solutions, we predicted crevasse depths
based on an analytical LEFM model, as described in the Ap-
pendices. For grounded glaciers with free tangential slip at
the base, we use the “double-edge crack” weight functions
(refer to Appendix B) as this was shown to yield stress in-
tensity factors that are consistent with those calculated using
the displacement correlation method (Jiménez and Duddu,
2018). Specifically, we consider the evolution of an isolated
surface crevasse within a grounded glacier of height H =
125m, assuming damage to initialize beneath a pre-specified
surface crack of depth ds = 10m. To further verify the LEFM
results, we conducted phase field fracture (PFF) simulations
with the same configuration used for LEFM studies but with
a pre-existing surface notch of depth ds = 10m and width
b = 2.5m. The PFF model simulations capture the non-linear
propagation of the crack driven by the mechanical stress
beneath the notch until it reaches a final and/or stabilized
crevasse depth. For a full description of this PFF model, we
refer the reader to our recent work (Clayton et al., 2022).

The comparison of the crevasse depth ratios (i.e. the fi-
nal crevasse depth normalized with the ice thickness) ob-
tained from LEFM and PFF models is shown in Fig. 4. As
the ocean water depth is increased, the glacier is subjected
to increased compressive hydrostatic pressure at the glacier
terminus, which suppresses crevasse growth. The surface
crevasse depth ratio decreases non-linearly with the ocean
water depth ratio, which is consistent with previous research
works (Bassis and Walker, 2012; Duddu et al., 2013). In each
of the depth-varying-property cases in Fig. 4, we obtained
excellent agreement between LEFM and PFF models, which
serves as a verification of our LEFM implementation. How-
ever, the nuanced differences in crevasse propagation results
for each of the cases are discussed in the sections below.

3.1 Influence of depth-varying density

If the material properties of ice are assumed to be depth-
independent then the longitudinal stress σxx varies linearly
with depth according to Eq. (1). In the case of a land-
terminating glacier (hw = 0) with free tangential slip at the
base, the σxx profile is symmetrical about the centre line
(z=H/2). This stress is tensile in the regions above the cen-
tre line, with a maximum value of σxx ≈ 300kPa at the top
surface for ice thickness H = 125 m (blue line in Fig. 3).
If a depth-dependent density is incorporated (green line in
Fig. 3a), the maximum value of σxx is reduced to ≈ 235kPa,
with a non-linear distribution in the upper region. Approxi-
mately 50m below the top surface, σxx tends towards a linear
distribution, with the compressive stress nearer to the base
being slightly less than that compared to the homogeneous
case due to the reduced weight of the ice. We next discuss

parametric studies to explore the effect of depth variations
on crevasse propagation.

The first parametric study considers a dry (air-filled)
crevasse, with different values of ocean water height hw. The
normalized crevasse depths (ds/H ) obtained using LEFM
for this case are presented in Fig. 4a. For land-terminating
glaciers (hw = 0m), the crevasse propagates to the full thick-
ness of the glacier for both the homogeneous and depth-
varying cases because there is no compressive ocean water
pressure to arrest crevasse growth. However, as ocean water
height is increased, the stabilized crevasse depth is reduced,
and the inclusion of the depth-varying density comes into ef-
fect and further reduces the stabilized crevasse depth. With
ocean water heights of hw > 0.7H , the longitudinal stress is
compressive enough that the crevasse will not grow beyond
the initial specified depth of 10 m. To verify the accuracy of
the LEFM model (solid line) results presented here, we also
show the results obtained from the phase field fracture model
(markers) in Fig. 4 (Clayton et al., 2022).

In Fig. 5, the relation between the crevasse depth ratio
(ds/H ) and the meltwater depth ratio (hs/ds) for the thin-
ner glacier (H = 125m) is shown. The ocean water height
is fixed at hw = 0.5H for both the homogeneous-density
(blue line) and depth-varying-density (red line) scenarios.
The largest reduction of 20 % in the stabilized crevasse depth
is observed for a dry crack (hs = 0) when considering the
effect of depth-varying density. The additional tensile stress
provided by the presence of meltwater allows the surface
crevasse to penetrate deeper into the strata, with full fracture
occurring for meltwater depth ratios greater than 0.5 in both
scenarios.

As shown in Fig. 3a, the inclusion of the firn layer reduces
the longitudinal stress in the upper regions of the glacier and
tends towards the homogeneous-stress profile in the consoli-
dated strata. The effect of this stress variation can be under-
stood from Fig. 5. As the meltwater depth ratio is increased,
the crevasse penetrates deeper into the glacier, and the in-
fluence of the firn layer on the stress state disappears; thus,
the crevasse depth for the depth-varying case agrees with the
homogeneous case for all hs/ds > 0.4. We found that the
normalized crevasse depth ratio is insensitive to the glacier
thickness H in the homogeneous case because the thickness
only controls the magnitude of the longitudinal stress but not
the depth at which the stress becomes compressive. However,
in the depth-varying case, the normalized crevasse depth ra-
tio is sensitive to the glacier thickness but converges with
the homogeneous case for thicker glaciers. For example, the
maximum percentage difference in the crevasse depth ratio
between the depth-varying and homogeneous cases is 20 %,
4.5 %, and 1 % for H = 125m, H = 250m, and H = 500m,
respectively.
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Figure 3. Far-field longitudinal stress σxx throughout the depth of a land-terminating glacier (hw = 0), showing the effects of the (a) depth-
varying density ρ(z); (b) depth-varying Young’s modulus E(z); and (c) depth-varying density and Young’s modulus ρ(z),E(z). Numerical
results are obtained from COMSOL Multiphysics for constant (crosses) and depth-varying properties (circles). The analytical solutions for
depth-varying properties are given in Eqs. (14), (20), and (23) and are represented by the green lines. The vertical dashed line indicates the
zero-stress level.

3.2 Influence of depth-varying Young’s modulus

The influence of a variable Young’s modulus on the far-field
longitudinal stress is shown in Fig. 3b. It can be observed that
there is a greater deviation from the homogeneous case rela-
tive to the depth-varying density case. In the upper regions,
σxx is further reduced to ≈ 60kPa, and the stress profile is
highly non-linear. However, at lower depths where the firn
is fully consolidated into ice, the stress profile becomes lin-
ear. The maximum compressive stress at the glacier base is
less due to the reduction in overburden pressure in the upper
strata. Notably, the depth at which the stress becomes zero
increases from 62.5 m in the homogeneous case to 72.3m in
the variable Young’s modulus case. However, the stress in-
tensity factor at the crevasse tip decreases due to a reduction
in the magnitude of longitudinal stress; thus, the firn layer
causes a reduction in crevasse penetration depth.

We now consider the propagation of an isolated dry
crevasse for the depth-varying Young’s modulus scenario us-
ing the LEFM model and the longitudinal-stress relation de-
rived in Eq. (20). The results for the parametric study eval-
uating the normalized crevasse depths for various ocean wa-
ter heights hw are presented in Fig. 4b. Similarly to the re-
sults in Fig. 4a, the dry crevasse propagates to the same depth

in the depth-varying and homogeneous cases for low ocean
water heights. Because the crevasse propagates deeper into
the fully consolidated ice regions, the properties of the firn
layer have little impact on crevasse depth. As the ocean water
height increases, the compressive-stress-resisting crevasse
propagation increases, and so the crevasse growth is arrested
at a shallower depth. The influence of the variable Young’s
modulus can be observed in these intermediate ocean wa-
ter heights (hw/H = 0.2− 0.6) as the crevasse depth is re-
duced when accounting for the firn layers. The maximum
difference in crevasse depth is ≈ 0.2H at an ocean water
height of hw = 0.55H . For ocean water heights greater than
hw = 0.55H , the crevasse does not propagate beyond the ini-
tial specified depth of 10 m.

In Fig. 5, we report the normalized crevasse depth ra-
tio versus the meltwater depth ratio considering the depth-
varying Young’s modulus (black line). The largest reduc-
tions in crevasse depth are observed for the thinner glacier
(H = 125m) with a dry crevasse, where ds/H is reduced
from 0.378 in the homogeneous case to 0.209 in the depth-
varying case. The difference in normalized crevasse depth is
reduced as the meltwater depth ratio increases because the
crevasse penetrates deeper into the fully consolidated strata,
thus reducing the influence of firn properties. For thicker
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Figure 4. Normalized crevasse depth predictions versus ocean water height ratio for a single isolated dry crevasse in a linear elastic ice sheet
considering homogeneous and depth-dependent mechanical properties.

glaciers, the difference between the homogeneous and depth-
varying Young’s modulus cases is smaller, which is attributed
to the increase in magnitude of far-field longitudinal stress
based on our stress analysis. The maximum percentage dif-
ference in crevasse depths for H = 125m is 44.9%, while
for H = 250m it is 16.5%, and for H = 500m it is 6.0%.

3.3 Influence of depth-varying Young’s modulus and
density

The next set of results entails the propagation of an isolated
surface crevasse driven by the longitudinal stress consider-
ing both the depth-varying Young’s modulus and the depth-
varying density shown in Eq. (23). The stabilized crevasse
depths for a dry crevasse in a grounded glacier of heightH =
125m, calculated using LEFM and the phase field method
for various ocean water heights hw, are presented in Fig. 4c.
As expected, for lower ocean water heights, the crevasse
depths are in agreement with the homogeneous case due
to the crevasse penetrating deeper into the compressive re-
gions of the glacier. We observe the largest reductions in
crevasse depths for intermediate values of ocean water height
(hw = 0.2− 0.4H ), whereas the crevasse does not propagate
beyond the initially specified depth for ocean water heights
greater than 0.4H in this case (red line in Fig. 4c).

The relationship between stabilized crevasse depth ratios
and meltwater depth ratios is presented in Fig. 5 for three
different glacier thicknesses (green lines). For the thinnest
glacier (H = 125m), the longitudinal stress is significantly
reduced in the upper regions due to the lower stiffness and
density of the firn layer, which prevents the dry crevasse
from propagating beyond the initially specified depth of 0.08
compared to a crevasse depth ratio of 0.378 for the homo-
geneous case. The difference in crevasse depth ratios is re-
duced with increasing meltwater depth ratios because the
crevasse propagates deeper into the consolidated ice strata.
Full-depth propagation is achieved for meltwater depth ratios
hs/ds ≥ 0.5. The percentage difference in penetration depth
for the dry crevasse is 18.0% for H = 250m and 6.21%
for H = 500m. Overall, we find that the influence of depth-
varying firn material properties is less in thicker glaciers;
however, the effect is more prominent if the variation in both
Young’s modulus and density with depth is considered.

4 Results for floating ice shelves

The final set of results entails the propagation of surface
crevasses in floating ice shelves. We consider an idealized
rectangular ice shelf geometry of variable height H and
length L= 5000 m. Three types of external loads act on the

https://doi.org/10.5194/tc-18-5573-2024 The Cryosphere, 18, 5573–5593, 2024



5582 T. Clayton et al.: Influence of firn layer material properties on surface crevasse propagation

Figure 5. Normalized crevasse depth predictions versus meltwater
depth ratio for a single isolated crevasse in a linear elastic ice sheet
considering homogeneous and depth-dependent mechanical proper-
ties for an ocean water height hw = 0.5H .

ice shelf: gravitational self-weight, causing a body force, and
ocean water pressure and meltwater pressure in the crevasse,
causing surface forces. A Robin-type boundary condition is
applied at the base of the ice shelf because the buoyancy pres-
sure is a function of the vertical displacement uz, as given by
ρsg (hw− uz). The far-left terminus is constrained to prevent
free body motion; the top surface is considered to be traction-
free; and the Neumann boundary condition is applied on the
right edge to account for the ocean water pressure, similarly
to the grounded-glacier case. A schematic diagram represent-
ing the applied boundary conditions is shown in Fig. 6.

The floatation heights for the buoyancy pressure are found
by assuming local hydrostatic equilibrium. For the homoge-
neous ice case, this can be simplified to the ratio of ice den-
sity to ocean water density – that is, hw/H = ρi/ρs ≈ 0.9.
However, the inclusion of the depth-varying density profile
leads to a reduction in the applied gravitational body force,
causing a decrease in the floatation height. We evaluate the
reduced floatation heights for each ice shelf thickness by in-
tegrating the depth-varying density profile over the entire ice
shelf thickness and dividing by the thickness and ocean wa-
ter density. Thus, we find that hw/H is equal to 0.7560 for
H = 125 m, 0.8268 for H = 250 m, 0.8629 for H = 500 m,
and 0.8809 for H = 1000 m. For deeper ice shelves, the ma-
terial properties of the firn layer become less significant as
its thickness is small relative to ice shelf thickness; therefore,

the floatation depth tends towards the homogeneous case for
thicker ice shelves.

Because of the buoyancy condition at the base and the de-
pendence on ice shelf deflection, the analytical solutions for
longitudinal stress derived in Sect. 2.1, 2.2, and 2.3 are not
appropriate in the regions closer to the terminus. In Clayton
et al. (2022), we showed that, faraway from the terminus,
the longitudinal stress in the ice shelf agreed well with an-
alytical solutions for grounded glaciers. Therefore, we use
finite-element analysis to extract the longitudinal-stress data
as a function of the vertical coordinate z at the horizontal po-
sition x = 4750 m (i.e. 250 m from the ice shelf terminus).
The data are fitted to a sixth-order polynomial equation, with
coefficients presented in Table C1 in the Appendix, which
defines the stress function σxx(z). Surface crevasses in the
far-field region are ignored because the longitudinal stress is
significantly compressive, preventing their propagation, re-
gardless of whether the crevasses were filled with meltwater
or not. The propagation of surface crevasses close to the ter-
minus (ice–ocean front) is investigated by estimating the fi-
nal and/or stabilized crevasse depth using LEFM. The LEFM
model used in Krug et al. (2014) (see Appendix A) is appro-
priate for floating ice shelves as this was shown to match
numerically calculated stress intensity factors using the dis-
placement correlation method (Jiménez and Duddu, 2018).

Crevasse penetration depths versus meltwater depth ratios
hs/ds from the LEFM model are presented graphically in
Fig. 7. Penetration depths for the dry crevasse (hs/ds = 0)
and for hs/ds = 0.75 are also reported in Tables 1 and 2, re-
spectively, for ease of comparing data points. For the homo-
geneous ice case, there is minimal influence over the nor-
malized crevasse depth by increasing glacier thickness (blue
lines); for example, the maximum difference in penetration
depth for the dry crevasse is 0.022H when increasing the ice
shelf thickness. Surface crevasses with low levels of meltwa-
ter only penetrate a few metres below the surface due to the
longitudinal-stress profile being predominantly compressive
due to the high ocean water pressure. For hs/ds < 0.6, an
incremental increase in meltwater does not result in signif-
icant crevasse growth. Full-fracture propagation is only ob-
served when crevasses are almost fully filled with meltwater
(hs/ds > 0.9), where the meltwater pressure is sufficient to
overcome the compressive longitudinal stress.

Considering the depth-varying Young’s modulus leads to
a minor reduction in stabilized crevasse depth (black lines),
with no growth occurring beyond the initial notch for melt-
water depth ratios of hs/ds < 0.6 for H = 125 m. Penetra-
tion depths match with the homogeneous case for meltwa-
ter depth ratios of hs/ds ≥ 0.8 as the crevasse penetrates
deeper into the ice strata. The influence of the depth-varying
Young’s modulus is reduced with increasing ice shelf thick-
ness. This is the most noticeable for the crevasse depths re-
ported in Table 2 as the percentage difference between the
depth-varying modulus and homogeneous cases is reduced
to 1 % for H = 250 m.

The Cryosphere, 18, 5573–5593, 2024 https://doi.org/10.5194/tc-18-5573-2024



T. Clayton et al.: Influence of firn layer material properties on surface crevasse propagation 5583

Figure 6. Schematic diagram showing the applied boundary conditions of a floating ice shelf containing an isolated surface crevasse.

Table 1. Normalized crevasse depths for a dry (hs/ds = 0.0) isolated surface crevasse within a floating ice shelf close to the front (x =
4750 m), calculated using the LEFM method in Krug et al. (2014). Bracketed values represent the difference in crevasse depth between the
variational and homogeneous cases normalized by the crevasse depth for homogeneous ice, (ddepth-dep

s − duniform
s )/duniform

s · 100%.

ρ = 917 kg m−3, ρ = 917 kg m−3, ρ(z), ρ(z),
E = 9.5 GPa E(z) E = 9.5 GPa E(z)

H = 125 m 0.099 0.080 (−19.5 %) 0.250 (151.8 %) 0.194 (95.0 %)
H = 250 m 0.127 0.080 (−36.9 %) 0.203 (59.8 %) 0.174 (37.4 %)
H = 500 m 0.129 0.108 (−16.2 %) 0.167 (28.8 %) 0.156 (20.3 %)
H = 1000 m 0.121 0.114 (−5.8 %) 0.138 (14.0 %) 0.134 (10.7 %)

Considering the depth-varying density in the fracture anal-
ysis results in surface crevasses propagating deeper into the
ice strata (red lines), with a dry crevasse propagating to a
depth of 0.250H compared to a depth of 0.099H for homo-
geneous ice within an ice shelf of thicknessH = 125 m. This
is in contrast to the grounded-glacier case (where crevasse
depth decreased) and can be attributed to the reduction in
overburden pressure and the reduced buoyancy height spe-
cific to ice shelves. The inclusion of meltwater within the
crevasse results in an increased penetration depth, and full-
thickness fracture is achieved for meltwater depth ratios
of hs/ds ≥ 0.8. The largest differences in penetration depth
for the depth-varying density compared to in the homoge-
neous case are observed in Table 2. For thin ice shelves
(H = 125 m) and a meltwater depth ratio of hs/ds = 0.75,
the crevasse propagates approximately 3 times deeper when
accounting for the depth-varying density. Similarly to the
grounded-glacier case, the influence of the depth-varying
density is reduced when the ice shelf thickness increases due
to a larger proportion of ice being fully consolidated. How-
ever, there are still some differences in penetration depth
compared to the homogeneous case for thick ice shelves
(H = 1000 m), with a percentage difference of 14.0% for the
dry crevasse and of 19.2% for hs/ds = 0.75.

Including the effects of both depth-varying density and
depth-varying modulus highlights that density is the more
prominent property influencing surface crevasse propagation

in ice shelves. It is observed in Fig. 7 that the majority of
results for depth-varying density and modulus (green lines)
overlap with the depth-varying density results (red lines).
The exception to this is for dry crevasses in thin ice shelves,
where the stabilized penetration depth is 0.194H compared
to 0.25H when considering only the depth-varying density.

5 Non-linear viscous incompressible rheology

The above analysis has considered ice to behave as a linear
elastic compressible solid, with a Poisson ratio of ν = 0.35.
This is based on the assumption that crevasse propagation
occurs in a rapid brittle manner, such that the cracking oc-
curs on a timescale well below the Maxwell time (typically
on the order of hours to days for glacial ice). However, it
is more common in the glaciology literature to assume that
glacier ice deformed over long timescales well before the nu-
cleation and propagation of crevasses. Also, if the slow de-
velopment of crevasses is considered, with crevasse depths
stabilizing over a span of weeks (Duddu et al., 2013), then
ice should be considered to be a viscous material. The an-
alytical solution (see Appendix A in Sun et al., 2021) for
the stress state of a grounded glacier with incompressible
linear elastic rheology and that of one with an incompress-
ible non-linear viscous rheology are the same. Therefore, in
this study, we simply set the Poisson ratio to ν ≈ 0.5 (us-
ing ν = 0.49 to prevent numerical issues) to obtain the back-
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Table 2. Normalized crevasse depths for an isolated surface crevasse with a meltwater depth ratio of hs/ds = 0.75 within a floating ice
shelf close to the front (x = 4750 m), calculated using the LEFM method in Krug et al. (2014). Bracketed values represent the difference
in crevasse depth between the variational and homogeneous cases normalized by the crevasse depth for homogeneous ice, (ddepth-dep

s −

duniform
s )/duniform

s · 100%.

ρ = 917 kg m−3, ρ = 917 kg m−3, ρ(z), ρ(z),
E = 9.5 GPa E(z) E = 9.5 GPa E(z)

H = 125 m 0.317 0.294 (−7.2 %) 0.911 (187.1 %) 0.914 (187.9 %)
H = 250 m 0.362 0.359 (−1.0 %) 0.649 (79.2 %) 0.651 (79.8 %)
H = 500 m 0.370 0.370 (0.0 %) 0.512 (38.4 %) 0.513 (38.6 %)
H = 1000 m 0.375 0.374 (-0.3 %) 0.447 (19.2 %) 0.445 (18.7 %)

Figure 7. Normalized crevasse depth predictions versus meltwater depth ratio for an isolated surface crevasse close to the front in a floating
ice shelf.

ground stress. In addition, we conduct finite-element simula-
tions for a grounded glacier, including the viscoelastic contri-
butions (with ν = 0.35) of ice flow modelled through Glen’s
flow law, and extract numerical values of the longitudinal
stress. To illustrate that the stress state is only sensitive to the
incompressibility assumption and not to the linear elastic or
non-linear viscous rheology, we plot the longitudinal-stress
profile for a land-terminating (hw = 0) grounded glacier con-
sidering linear elastic compressibility (ν = 0.35), linear elas-
tic incompressibility (ν ≈ 0.5), and a non-linear viscous rhe-
ology in Fig. 8.

Figure 8 shows that if ice is considered to be linear elas-
tic incompressible (ν ≈ 0.5), the obtained stress solution
matches with the steady-state creep stress state derived by
Weertman (1957) for depth-independent density and matches
stress profiles obtained through simulations using a visco-
elastic rheology. We observe that stresses are more exten-
sional in the upper surface and more compressive at the base
when considering incompressibility and that the stress ob-
tained through simulations is independent of ice rheology
(Glen’s law creep coefficients) once a sufficiently long time
has passed. For the homogeneous case, the longitudinal stress
varies linearly with depth and is symmetrical about the cen-
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Figure 8. Far-field longitudinal stress σxx throughout the depth of
a land-terminating glacier (hw = 0), showing the effects of depth-
varying density ρ(z) considering linear elastic compressibility (ν =
0.35), linear elastic incompressibility (ν ≈ 0.5), and a non-linear
viscous rheology.

tre line z=H/2. Similarly to the linear elastic compressible
case, the inclusion of depth-dependent density results in a re-
duction in both the lithostatic stress contribution σzz and the
resistive stress Rxx for both material rheologies.

The longitudinal-stress profiles presented in Fig. 8 are
used to drive crevasse propagation in the linear elastic frac-
ture mechanics study. Values of crevasse penetration depth
for an isolated dry crevasse in a grounded glacier, subject
to different values of ocean water height hw, are presented
in Fig. 9. The solid-line curves represent incompressible ice,
whilst the dashed lines represent compressible ice of Pois-
son ratio ν = 0.35. Considering ice to be an incompressible
solid leads to deeper crevasse penetration depths compared
to linear elastic compressibility, but these crevasses follow a
similar trend as that observed for the compressible case. Ac-
counting for the depth-varying properties of the firn layer in
grounded glaciers leads to two different regimes of crevasse
growth behaviour. If the resistive stress Rxx is large (e.g. a
low ocean water height), the firn layer promotes crevasse
propagation, and the crevasse penetrates to a slightly greater
depth than in the constant-density case; this result is in agree-
ment with the van der Veen (1998a) study. In contrast, if the
resistive stress is small (e.g. high ocean water height) then the
firn layer stunts crevasse propagation, and the crevasse depth
would be greater in the constant-density case; this result con-

Figure 9. Normalized crevasse depth predictions versus ocean wa-
ter height ratio for a single isolated dry crevasse in a grounded
glacier considering compressible (ν = 0.35) and incompressible
(ν ≈ 0.5) homogeneous and depth-dependent mechanical properties
of ice.

tradicts the van der Veen (1998a) study. We note that, even
if the Nye zero-stress criterion is used (assuming densely
spaced cracks) instead of using LEFM to consider a single
isolated crevasse, this finding of the two different crevasse
growth regimes holds true.

Comparing the effects of assuming an incompressible
and/or viscous rheology, the percentage difference in pene-
tration depth when considering depth-dependent density for
a dry crevasse of ocean water height hw = 0.5H is reduced
to 4 % compared to 20 % for linear elastic compressibility.
The ocean water height required to prevent any development
of dry crevasses differs, with values of hw = 0.55H being
sufficient for compressible depth-dependent density cases,
whereas ocean water levels of hw = 0.8H are required for the
incompressible case. Comparing this to the cases in which
no density variations are considered still shows a similar
trend, with higher ocean water levels being needed to sta-
bilize crevasses when density variations are not considered.

Finally, we consider water-filled surface crevasses in float-
ing ice shelves of height H = 125m and length L= 5000m
using a non-linear viscous ice rheology. Similarly to the lin-
ear elastic compressible case, we consider surface crevasses
at the horizontal position x = 4750m (250 m from the ice
shelf terminus) and extract the longitudinal-stress profiles
from the finite-element analysis. We plot the stabilized
crevasse depth versus meltwater depth ratio for the non-linear
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Figure 10. Normalized crevasse depth predictions versus meltwater
depth ratio for a single isolated surface crevasse located close to the
ice shelf front (x = 4750m) considering a linear elastic (LE) and
non-linear viscous (NLV) rheology.

viscous (NLV) rheology in Fig. 10 along with the results
for linear elastic (LE) compressibility (ν = 0.35) and incom-
pressibility (ν = 0.49).

When comparing the stabilized crevasse depths close to
the front, we note that the penetration depth is indepen-
dent of ice rheology, which is in contrast to the grounded-
glacier case. For the homogeneous density, minimal crevasse
propagation is observed for meltwater depth ratios below
hs/ds < 0.6, with full-thickness propagation only occurring
when fractures are close to saturation. The inclusion of the
depth-dependent density results in deeper crevasse penetra-
tion depths, with minimal differences in penetration depth
between the linear elastic cases and the non-linear viscous
rheology. This likely indicates that, for crevasses close to
the front, fracture is driven by the flotation height and the
bending stresses due to the floating condition. For depth-
dependent density, the reduction in flotation height leads to
an increase in tensile stress in the upper surface due to in-
creases in Rxx and increased bending stress. In addition, the
lithostatic component of longitudinal stress is reduced, lead-
ing to deeper crevasse propagation when including firn den-
sity.

We also consider the propagation of an isolated surface
crevasse located in the far-field region (x = 2500 m) of a
floating ice shelf, with results presented in Fig. 11. As

Figure 11. Normalized crevasse depth predictions versus meltwater
depth ratio for a single isolated surface crevasse located in the far-
field region (x = 2500m) considering a linear elastic (LE) and non-
linear viscous (NLV) rheology.

shown previously, for the linear elastic compressible rhe-
ology, the stress state is fully compressive for both the
homogeneous- and the depth-dependent-density case; thus,
no crevasse propagation is observed regardless of the melt-
water depth ratio. By contrast, when considering the non-
linear viscous rheology of ice, surface crevasses may prop-
agate in the far-field region if there is sufficient meltwa-
ter pressure present. Large increases in crevasse penetra-
tion depth are observed for meltwater depth ratios greater
than hs/ds = 0.50, with full-thickness propagation being ob-
served close to crevasse saturation at hs/ds = 0.95. Similarly
to crevasses near the front, the inclusion of depth-dependent
density results in increased crevasse penetration depths com-
pared to the homogeneous-density scenario. Thus, similar
conclusions can be drawn for both elastic and viscous rhe-
ologies.

6 Discussion

An important finding of this paper is that the inclusion
of the depth-varying mechanical properties of unconsoli-
dated ice strata results in a reduction in both the litho-
static compressive-stress component and the resistive tensile-
stress component. Contrarily to the conventional understand-
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ing (van der Veen, 1998a), we find that accounting for depth-
varying density and modulus can lead to an overall reduc-
tion in surface crevasse depths in grounded glaciers. This is
because, in some scenarios, the reduction in resistive stress
can hinder crevasse propagation more than the increase in
crevasse propagation resulting from the reduction in litho-
static stress. Thus, our study suggests that firn layers can have
a stabilizing effect by curtailing surface crevasse growth in
grounded glaciers.

Assuming ice to be a linear elastic compressible material,
we find that considering depth-varying Young’s modulus has
a greater influence on crevasse depths than density in thin-
ner glaciers. For example, considering depth-varying density
results in a maximum percentage difference of 20 % in the
penetration depth of dry crevasses compared to a maximum
percentage difference of 45 % when considering the depth-
varying Young’s modulus. The largest reductions in crevasse
depths are observed in thinner glaciers (depths of approxi-
mately 100–150 m), where the stabilizing effects of the firn
layers seem to be more prominent. Larger meltwater depth
ratios are required to propagate surface crevasses in thin-
ner ice shelves, whereas, in thicker glaciers, the influence of
firn density is less (in some cases negligible), and so surface
crevasses propagate deeper into the fully consolidated strata.
Thus, our study reveals that LEFM models assuming homo-
geneous ice properties are valid for crevasse depth estimation
in thicker glaciers with ice thickness H > 250 m.

Accounting for depth-varying density in the floating-
ice-shelf case increases the penetration depth of surface
crevasses close to the ice–ocean front, with this increase
being caused by reductions in buoyancy height and litho-
static compressive stresses. The effect of depth-varying den-
sity is dominant in thinner ice shelves, but it can still im-
pact surface crevasse propagation in ice shelves as thick as
H = 1000 m, although this would be to a lesser extent. For
instance, the crevasse depth ratio increases to ds = 0.91H
(188 % increase compared to homogeneous case) for thin
ice shelves (H = 125m), whereas a 19 % increase is ob-
served for 1km thick ice (ds = 0.45H ). Considering the
depth-varying Young’s modulus in the floating-ice-shelf case
reduces surface crevasse depth for low meltwater depths
slightly, and the effect becomes less significant in thicker ice
shelves. This study suggests that, as the ice shelves become
thinner due to increased basal melting in warmer oceans, the
effects of the firn layer can make them more vulnerable by
allowing deeper crevasse propagation. However, without the
presence of any meltwater, full-depth penetration of surface
crevasses in ice shelves may not be possible. Therefore, an
important aspect to explore in a future study is the effect of
the firn layer on basal crevasse propagation in ice shelves,
which likely controls rift formation and iceberg calving.

The analytical (closed-form) and numerical (polynomial-
fitted) solutions developed in this paper provide a more real-
istic description of the longitudinal stress in glaciers and ice
shelves. The effect of depth-varying firn and/or ice properties

could be accounted for in the shallow-shelf approximation
(SSA) and could be coupled with LEFM models to poten-
tially enable the prediction of rift propagation. Krug et al.
(2014) proposed a simple method for estimating crevasse
depths in an ice shelf, wherein the longitudinal stress cal-
culated from the full-Stokes model was used to evaluate the
stress intensity factors based on an LEFM model. A simi-
lar approach can be developed to estimate crevasse depths
from shallow-shelf models or remote sensing data. In Ap-
pendix D, we discuss how the 2D stress fields obtained from
a shallow-ice-shelf model can be augmented to include the
depth-dependent density and Young’s modulus. This stress
can then be used within an analytical LEFM model to pre-
dict crevasse depth and calving.

We acknowledge that there are a few limitations in the cur-
rent study. Firstly, we assume our glacier and/or ice shelf
geometry to be a 2D rectangle with the free-slip condition
at the base, which is highly idealized and does not consider
any contributions from frictional sliding at the base for the
grounded case or buttressing stresses for floating ice shelves
(Buck, 2023; Buck and Lai, 2021). Another limitation of the
current model is that the rate of firn consolidation is assumed
to be uniform, with a horizontal position, and is assumed to
be unaffected by glacier thickness H . However, firn densi-
fication is dependent on environmental factors including ac-
cumulation rates, overburden pressure, temperature, and lo-
cal strain rates (van den Broeke, 2008; Amory et al., 2024).
Firn densification near terminus regions or in thinner glaciers
potentially results in a thinner firn layer and thus a reduced
value of the parameterD, indicating a shorter length scale for
the transition between firn and dense ice properties. How-
ever, while the findings presented here are all based on the
density profiles from the Ronne Ice Shelf (Rist et al., 2002),
the analytic models (and provided MATLAB code) allow for
an easy way to evaluate the impact for specific firn heights.
This makes it possible to estimate the impact of including
firn properties on the crevasse depth for specific locations.

One final limitation of our analytic models is related to
water-filled crevasses. While we investigate the effects of in-
cluding the effect of firn on the density and Young’s modu-
lus, both these effects are (partially) driven by the porosity
of the firn. However, when water-filled crevasses are con-
sidered, no model is included to account for water leaking
from the crevasse into the surrounding firn. For colder ice
sheets and deeper crevasses, where the full water contents
are surrounded by ice of sub-zero temperatures, this assump-
tion is reasonable: any water that seeps into the surrounding
ice or firn will freeze, creating an impermeable ice layer sur-
rounding the crevasse, which will prevent water from perme-
ating further into the firn (Buzzard et al., 2018; Amory et al.,
2024). As these ice layers are typically very thin, they do not
alter the mechanical properties of the ice. However, if more
temperate glaciers are considered or if one considers condi-
tions where water-filled crevasses do not penetrate to a con-
siderable depth, the firn and/or ice surrounding the crevasse
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might not be sufficiently cold to cause this ice layer to form.
In such circumstances, the presented model will overestimate
the crevasse depths obtained as the saturated firn will reduce
the effects of the water pressure within the crevasse by re-
distributing this pressure over a larger region surrounding the
crevasse.

7 Conclusions

In this paper, we derived analytical equations for the far-field
longitudinal stress, including the effects of surface firn lay-
ers, described by depth-varying density and Young’s modu-
lus profiles based on field data. These analytic expressions
were used to perform fracture propagation studies on iso-
lated air- and/or water-filled surface crevasses in grounded
glaciers and ice shelves for the homogeneous (assuming
fully consolidated glacial ice) and depth-varying ice cases.
The derived analytical equations for the far-field longitudi-
nal stress in grounded glaciers were verified with the stress
profiles obtained through finite-element analysis. We also
used the phase field fracture model to validate the crevasse
depths predicted by the LEFM model. The LEFM model re-
sults demonstrate the potentially large impact of including
the properties of unconsolidated firn layers within the pre-
dictions of crevasse depths. For grounded glaciers, depth-
varying firn properties inhibit crevasse propagation, requir-
ing lower ocean water heights and larger meltwater depth ra-
tios for full-depth propagation. In contrast, for floating ice
shelves and/or tongues, the consideration of depth-varying
firn properties promoted crevasse propagation, in some cases
up to 3 times as deep. Thus, with regard to fracture and calv-
ing, the firn layer may have a stabilizing effect on grounded
glaciers, whereas it may have a destabilizing effect on ice
shelves. Overall, this study establishes the importance of in-
cluding the depth dependence of firn layer material properties
in crevasse models using LEFM. Additionally, we propose
a simple scheme to integrate our analytical solutions with
the stresses obtained from the shallow-shelf approximation,
which can allow us to assess the vulnerability of ice shelves
to calving, accounting for firn layer effects.

Appendix A: Analytical LEFM model

We evaluate the stress intensity factor (SIF) considering the
contributions of normal tensile stress, lithostatic compres-
sive stress, and meltwater pressure using an iterative code in
MATLAB. An initial crevasse depth d is suggested, and the
net SIF is found by integrating over the crevasse depth due
to the varying stress field with depth. The crevasse will con-
tinue to propagate ifKnet

I is larger than the fracture toughness
KIC, which, for glacial ice, is taken as KIC = 0.1MPam1/2,
found from experimental data (Fischer et al., 1995). Since
Knet

I is proportional to the net longitudinal stress σnet, the
SIF will begin to be reduced once the crevasse penetrates

into the compressive region of the ice. The net longitudinal
stress σnet is defined as the sum of the longitudinal stress σxx
and the meltwater pressure in the crevasse pw:

σnet(z)= σxx(z)+pw(z), (A1)

where

pw = ρwg 〈hs− (z− zs)〉 . (A2)

In the above, ρw is the meltwater density, zs is the elevation
of the crevasse tip above the glacier base, and hs is the melt-
water height in the crevasse. The presence of the Macaulay
brackets in Eq. (A2) indicates that the pressure is zero above
the water surface.

The SIF Knet
I is calculated using the following equation:

Knet
I =

d∫
0

MD (χ,H,d)σnet (χ)dχ, (A3)

where MD is a weight function dependent on the applied
boundary conditions and domain geometry, and χ =H − z
and d represent the trial crevasse depth. This selection has
been debated in various literature sources (van der Veen,
1998a; Krug et al., 2014).

Appendix B: Weight function for grounded glaciers
with free tangential slip

For a grounded glacier undergoing free slip, we follow the
double-edge crack formulation as this gives good agree-
ment with SIFs calculated using the displacement correla-
tion method with finite-element method (FEM) simulations
(Jiménez and Duddu, 2018). The weight function is taken
from Tada et al. (1985) and takes the following form:

MD =
2
√

2H

(
1+ f1

(χ
d

)
f2

(
d

H

))
θ

(
d

H
,
χ

H

)
, (B1)

where the functions f1,f2, and θ are defined as

f1 = 0.3
(

1−
(χ
d

) 5
4
)
, (B2)

f2 =
1
2

(
1− sin

(
πd

2H

))(
2+ sin

(
πd

2H

))
, (B3)

θ =

√
tan( πd2H )√

1−
(

cos( πd2H )

cos( πχ2H )

)2
. (B4)

Appendix C: Weight function for floating ice shelves

For the floating-ice-shelf condition, it was found that the SIFs
calculated using the weight function presented in Krug et al.
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(2014) gave better agreement with SIFs using the displace-
ment correlation method (Jiménez and Duddu, 2018). There-
fore, the penetration depths in Sect. 4 were calculated using
the formulation below:

Knet
1 =

d∫
0

β (z,H,d)σnet (χ)dχ, (C1)

where

β (z,H,d)=
2

√
2π (d − z)

(
1+M1

(
1−

z

d

)0.5

+M2

(
1−

z

d

)
+M3

(
1−

z

d

)1.5
)
, (C2)

M1 = 0.0719768− 1.513476λ− 61.1001λ2
+ 1554.95λ3

− 14583.8λ4
+ 71590.7λ5

− 205384λ6
+ 356469λ7

− 368270λ8
+ 208233λ9

− 49544λ10, (C3)

M2 = 0.246984+ 6.47583λ+ 176.456λ2
− 4058.76λ3

+ 37303.8λ4
− 181755λ5

+ 520551λ6
− 904370λ7

+ 936863λ8
− 531940λ9

+ 12729λ10, (C4)

M3 = 0.529659− 22.3235λ+ 532.074λ2
− 5479.53λ3

+ 28592.2λ4
− 81388.6λ5

+ 128746λ6
− 106246λ7

+ 35780.7λ8, (C5)

and λ= d/H .
The longitudinal stress in the ice shelf cannot be deter-

mined analytically due to the bending-stress contribution
from the floatation pressure at the base. The stress profiles at
the front are obtained numerically (normalized with respect
to ρigH ) and are fitted to a sixth-order polynomial equation,
taking the general form below:

σxx

ρigH
= A

( χ
H

)6
+B

( χ
H

)5
+C

( χ
H

)4

+D
( χ
H

)3
+E

( χ
H

)2
+F

( χ
H

)
+G, (C6)

where A,B,C,D,E,F , and G are non-dimensionalized
stress coefficients that are presented in Table C1.

The net SIFs from Eqs. (A3) and (C1) are numerically in-
tegrated over the crevasse depth, taking into account the vari-
ations in net longitudinal stress with depth. As the crevasse
propagates into deeper strata, Knet

I is reduced, and the
crevasse stabilizes once Knet

I =KIC.

Appendix D: Linking with shallow-ice-shelf models

Over longer timescales, ice sheet flow is described as an in-
compressible non-linear viscous-fluid-like model, where the
elastic deformations are negligible compared to the viscous
deformation. Therefore, the incompressible Stokes equations
are used to solve for mass and momentum balance, wherein

the volumetric stress or pressure p is constitutively indeter-
minate, and the deviatoric stress tensor σ ′ is defined by a
non-linear viscous constitutive law as follows:

σ ′ = σ −pI= 2µ(ε̇eq)ε̇, (D1)

where ε̇ is the strain rate tensor given by the symmetric part
of the velocity gradient tensor, I is the second-order identity
tensor, and the viscosity µ is determined using a Bingham–
Norton–Maxwell-type relation (Glen, 1955) that accounts for
shear-thinning behaviour.

µ= A(T )−1/nε̇
1−n
n

eq (D2)

In the above equation, A(T ) is the temperature-dependent
creep coefficient, n is the creep exponent, and ε̇eq is the sec-
ond invariant of the strain rate tensor. Notably, the strain rate
tensor can be calculated using surface velocity obtained from
remote sensing observations (Chudley et al., 2022).

While it may not be impossible to simulate ice sheet flow
using a full-Stokes model, this is currently too computation-
ally expensive. The spatial discretization in the full-Stokes
model is dictated by the ice thickness, which is much smaller
than the in-plane dimensions of ice sheet–ice shelf systems,
thus leading to an excessively refined mesh for resolving
in-plane ice velocity. The shallow-ice-shelf approximation
(SSA) simplifies the full-Stokes model by assuming that ver-
tical shear is zero (MacAyeal, 1989), leading to the following
depth-averaged governing equations in the horizontal x and
y directions:

∂

∂x

(
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
+
∂

∂y

(
µ
∂u

∂y
+µ

∂v

∂x

)
= ρgH

∂s

∂x
,

∂

∂y

(
4µ
∂v

∂y
+ 2µ

∂u

∂x

)
+
∂

∂x

(
µ
∂v

∂x
+µ

∂u

∂y

)
= ρgH

∂s

∂y
, (D3)

where µ=
∫ H

0 µ dz is the depth-integrated viscosity, and s
is the upper surface elevation. Together with appropriate
boundary conditions (e.g. velocity and terminus ocean wa-
ter pressure), solving this equation provides an excellent ap-
proximation of the flow of ice sheets. Using the velocity com-
ponents, we can determine the deviatoric stress components
according to Eq. (D1). Based on the assumption that the ver-
tical stress σzz is hydrostatic, we can determine the stress
components in the plane of the ice shelf as follows (Greve
and Blatter, 2009):

σ xx = 2σ ′xx + σ
′
yy − ρig(H − z),

σ yy = 2σ ′yy + σ
′
xx − ρig(H − z),

σ xy = σ
′
xy, (D4)

where σ represents the height-averaged stresses. Here, we
propose an approximate way of linking the LEFM model for
crevasse depth estimation with the SSA. Using the in-plane
stresses in Eq. (D4), we can determine the principal values
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Table C1. Coefficients of normalized longitudinal stress in Eq. (C6) for a floating ice shelf at horizontal position x = 4750 m.

A B C D E F G

ρ = 917 kg m−3, E = 9.5 GPa, H = 125 m 0.000 0.000 0.000 −0.003 −0.005 −1.05 0.073
ρ = 917 kg m−3, E(z), H = 125 m −0.435 1.858 −3.422 3.543 −2.178 −0.372 0.013
ρ(z), E = 9.5 GPa, H = 125 m −0.064 0.295 −0.611 0.761 −0.626 −0.703 0.110
ρ(z), E(z) , H = 125 m −0.542 2.352 −4.454 4.845 −3.267 0.217 0.025

ρ = 917 kg m−3, E = 9.5 GPa, H = 250 m −0.012 0.034 −0.023 −0.016 0.022 1.075 0.083
ρ = 917 kg m−3, E(z), H = 250 m −2.688 9.862 −14.657 11.290 −4.749 −0.074 0.017
ρ(z), E = 9.5 GPa, H = 250 m −0.453 1.711 −2.652 2.207 −1.083 −0.725 0.100
ρ(z), E(z), H = 250 m −3.297 12.198 −18.367 14.477 −6.361 0.418 0.022

ρ = 917 kg m−3, E = 9.5 GPa, H = 500 m 0.189 −0.728 1.113 −0.819 0.254 −1.086 0.082
ρ = 917 kg m−3, E(z), H = 500 m −6.425 21.878 −29.374 19.695 −6.876 0.075 0.024
ρ(z), E = 9.5 GPa, H = 500 m −0.804 2.694 −3.575 2.458 −1.007 −0.805 0.088
ρ(z), E(z), H = 500 m −7.599 25.940 −34.968 23.630 −8.396 0.406 0.027

ρ = 917 kg m−3, E = 9.5 GPa, H = 1000 m 1.246 −3.946 4.596 −2.235 0.216 −0.945 0.067
ρ = 917 kg m−3, E(z), H = 1000 m −6.490 21.657 −28.390 18.540 −6.324 −0.028 0.030
ρ(z), E = 9.5 GPa, H = 1000 m 0.506 −1.453 1.248 0.077 −0.674 −0.751 0.066
ρ(z), E(z) , H = 1000 m −6.858 22.931 −30.191 19.901 −6.927 0.129 0.031

which correspond to the maximum and minimum normal
stresses in the plane of the ice shelf. Assuming that crevasses
open perpendicularly to the maximum principal stress σmax,
we can determine the net force Fw (per unit width out of
plane) acting on the boundary as follows:

Fw =Hσmax =H

(
σ xx + σ yy

2

+
1
2

√
(σ xx − σ yy)2+ 4σ 2

xy

)
. (D5)

The force Fw, if compressive, would have a similar effect as
the ocean water pressure term in Eq. (23), and so it can be
used to replace the term 1

2ρsgh
2
w. Thus, the SSA stress solu-

tion can be augmented to include the effect of depth-varying
density and modulus as follows:

σxx =
ν

1− ν
ρig

(
z−

1−E∗

2
H

)
− (1+E∗)

Fw

H

+
ν

1− ν
(ρi− ρf)gD

((
1− e−(H−z)/D

)
+ (1+E∗)

(
− 1+

D

H
(1− e−H/D)

))
. (D6)

The above stress can be used as the net stress to determine the
stress intensity factor and to estimate the crevasse depth. We
note that, depending on the discretization used for the numer-
ical solution of the SSA, some of the details of the scheme
would need modifications. In future work, we will establish
the viability of coupling this scheme with the LEFM model
with the shallow-shelf and other depth-integrated approxima-
tions.

Appendix E: Influence of depth-variable Poisson ratio ν

For the crevasse propagation studies previously presented,
a depth-invariant Poisson’s ratio of ν = 0.35 was assumed.
However, it has been suggested that Poisson’s ratio also ex-
hibits a linear dependency on ice density and therefore leads
to a depth-dependent profile (Smith, 1965). Furthermore,
King and Jarvis (2007) and Schlegel et al. (2019) provide
a depth-dependent Poisson’s ratio profile based on seismic
velocity measurements conducted on ice cores. To study the
effect of this depth-dependent Poisson ratio, a linear elastic
fracture mechanics study is performed. We assume an expo-
nential distribution of Poisson’s ratio with depth, similarly to
the density and Young’s modulus distributions.

ν(z)= νi− (νi− νf)e
−(H−z)/D (E1)

In the above, νf = 0.07 is the Poisson’s ratio of firn in the up-
per surface, νi = 0.35 is the Poisson’s ratio of fully consol-
idated ice, and D = 32.5 is the tuned constant. This profile
approximates the observations from Schlegel et al. (2019),
where we have scaled the length parameter D to match our
density and Young’s modulus profiles as this profile was ob-
tained at a different location (with significantly different ice
sheet and firn thickness). As it is not possible to derive a fully
analytic expression for the stress profiles with this depth-
dependent Poisson’s ratio, the longitudinal-stress profiles are
obtained numerically using the finite-element method. The
numerical stresses are then used to drive the propagation of
the surface crevasse using LEFM.

We consider a dry (air-filled) crevasse, with different val-
ues of ocean water height hw, and plot the normalized
crevasse penetration depth versus ocean water height hw
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Figure E1. Normalized crevasse depth predictions versus ocean wa-
ter height ratio for a single isolated dry crevasse in a linear elastic
ice sheet considering homogeneous and depth-dependent Poisson
ratios.

in Fig. E1. This figure shows that including variations in
Poisson’s ratio has a negligible effect as compared to den-
sity and Young’s modulus variations. The largest percent-
age difference in crevasse depth was observed for interme-
diate ocean water levels, with an increase of 6% in crevasse
depth with respect to the homogeneous case when consid-
ering a depth-dependent Poisson’s ratio for an ocean wa-
ter height of hw = 0.5H . The effect of including a depth-
dependent Poisson’s ratio is less influential compared to den-
sity and Young’s modulus as depth-dependent density re-
sulted in a reduction of 20% in the crevasse depth, and the
depth-dependent Young’s modulus resulted in a reduction of
45% in the crevasse depth. This study suggests that the inclu-
sion of variations in Poisson ratio does not play a significant
role in crevasse propagation.

Code and data availability. The analytic expressions for the stress
state are provided in a MATLAB script to plot the stress–depth
relations from Fig. 3 for arbitrary input parameters. This ad-
ditionally performs the LEFM analysis, producing the crevasse
depths from Fig. 4. This code is provided at https://github.com/
T-Clayton/LEFM_Firn_Inclusions (last access: 19 November 2024)
and https://doi.org/10.5281/zenodo.13911830 (Clayton and Hage-
man, 2024). No new datasets are used in this work, except for those
generated and reproducible via the developed code.
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